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ABSTRACT

This paper is concerned with coherent quantum linear quadratic Gaussian (CQLQG) control. The problem
is to find a stabilizing measurement-free quantum controller for a quantum plant so as to minimize a
mean square cost for the fully quantum closed-loop system. The plant and controller are open quantum
systems interconnected through bosonic quantum fields. In comparison with the observation-actuation
structure of classical controllers, coherent quantum feedback is less invasive to the quantum dynamics.
The plant and controller variables satisfy the canonical commutation relations (CCRs) of a quantum
harmonic oscillator and are governed by linear quantum stochastic differential equations (QSDEs). In
order to correspond to such oscillators, these QSDEs must satisfy physical realizability (PR) conditions
in the form of quadratic constraints on the state-space matrices, reflecting the CCR preservation in time.
The symmetry of the problem is taken into account by introducing equivalence classes of coherent
quantum controllers generated by symplectic similarity transformations. We discuss a modified gradient
flow, which is concerned with norm-balanced realizations of controllers. A line-search gradient descent
algorithm with adaptive stepsize selection is proposed for the numerical solution of the CQLQG control
problem. The algorithm finds a local minimum of the LQG cost over the parameters of the Hamiltonian
and coupling operators of a stabilizing coherent quantum controller, thus taking the PR constraints into
account. A convergence analysis of the algorithm is presented. Numerical examples of designing locally

optimal CQLQG controllers are provided in order to demonstrate the algorithm performance.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Coherent quantum feedback control (Lloyd, 2000; Mabuchi,
2008) is a quantum control paradigm which is aimed at achiev-
ing given performance specifications for quantum systems, such
as internal stability and optimization of a cost functional. Such
systems arise naturally in quantum physics (Holevo, 2003) and
its engineering applications (for example, nanotechnology and
quantum optics (Gardiner & Zoller, 2004)). The dynamic vari-
ables of quantum systems are (usually noncommuting) operators
on an underlying Hilbert space which evolve according to the
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laws of quantum mechanics (Merzbacher, 1998). The quantum
dynamics are particularly sensitive to interaction with classical
devices over the course of quantum measurement, as reflected
in the projection postulate of quantum mechanics. In order to
overcome this issue, coherent quantum control employs the idea
of direct interconnection of quantum plants (that is, the quantum
systems to be controlled) with other quantum systems playing the
role of controllers, possibly mediated by light fields. Unlike the
traditional observation-actuation control loop, this fully quantum
measurement-free feedback avoids the loss of quantum informa-
tion resulting from a conversion to classical signals.

While some of the potential applications of coherent quantum
feedback control involve nonlinear dynamics and/or non-Gaussian
noises, the linear setting is an important starting point for study
and presents advantages in terms of analytic and computational
tractability. Quantum-optical components, such as optical cavi-
ties, beam splitters and phase shifters, make it possible to imple-
ment coherent quantum feedback governed by Markovian linear
quantum stochastic differential equations (QSDEs) (Parthasarathy,
1992; Petersen, 2016), provided the latter are physically realizable
(PR) as open quantum harmonic oscillators (Edwards & Belavkin,
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2005; Gardiner & Zoller, 2004). The resulting PR conditions (James,
Nurdin, & Petersen, 2008; Shaiju & Petersen, 2012; Sichani &
Petersen, 2016) are organized as quadratic constraints on the
coefficients of the QSDEs. The PR constraints for the state-space
matrices of a coherent quantum controller complicate the solution
of quantum counterparts to the classical Linear Quadratic Gaussian
(LQG) and %, control problems.

The Coherent Quantum LQG (CQLQG) problem is one of the
fundamental problems arising in linear coherent quantum con-
trol theory (Petersen, 2016). The analogy between this problem
and its classical counterpart in the linear control theory can be
traced back to the connections between classical and quantum
probability frameworks. The CQLQG control problem (Nurdin,
James, & Petersen, 2009) seeks for a stabilizing PR quantum con-
troller so as to minimize an infinite-horizon mean square cost
functional for the fully quantum closed-loop system. In physically
relevant applications, problems such as cooling of optomechanical
resonators can be formulated in the framework of the CQLQG
control problem (Hamerly & Mabuchi, 2013). The CQLQG control
problem is a constrained optimization problem for the steady-state
quantum covariance matrix of the plant-controller system satisfy-
ing an algebraic Lyapunov equation (ALE). A numerical procedure
for finding suboptimal controllers for this problem was proposed
in Nurdin, James, and Petersen, (2009), and algebraic equations
for the optimal CQLQG controller were obtained in Vladimirov
and Petersen (2013a). We also mention that coherent quantum
LQG control settings were considered in Maalouf and Petersen
(2009) for a class of quantum systems (with annihilation operators
only), in the context of evolutionary optimization for entanglement
control (Harno & Petersen, 2015), and also for different scenarios of
plant-controller coupling in Zhang and James (2011). Despite the
previous results, the CQLQG control problem does not lend itself to
an “elegant” solution (for example, in the form of decoupled Riccati
equations as in the classical case (Kwakernaak & Sivan, 1972)) and
remains a subject of research. Since the main difficulties are caused
by the coupling between the ALEs for the state-space matrices of
the optimal controller due to the PR constraints, Vladimirov and
Petersen (2013b) offered an alternative approach based on moving
the “burden” of the constraints to the Lagrange multipliers for a
coherent quantum filtering problem (Miao & James, 2012) which
is a simplified feedback-free version of the control problem.

In the present paper, we develop an algorithm for the numerical
solution of the CQLQG control problem by using a line-search
(gradient descent) method and the Hamiltonian parameterization
of PR quantum controllers (Vladimirov & Petersen, 2013a). This
parameterization is a different technique to handle the PR con-
straints by reformulating the CQLQG control problem in an uncon-
strained fashion. More precisely, the optimal solution is sought in
the class of stabilizing PR controllers whose state-space matrices
are parameterized in terms of the free Hamiltonian and coupling
operators of an open quantum harmonic oscillator (Edwards &
Belavkin, 2005). We obtain ordinary differential equations (ODEs)
for the gradient descent in the Hilbert space of these matrix-valued
parameters of coherent quantum controllers. In accordance with
the PR conditions, the CQLQG control problem has a special type
of symmetry which makes it invariant under symplectic similarity
transformations of the controller variables (Vladimirov & Petersen,
2011, 2013a). We take this symmetry into account and consider
equivalence classes of state-space representations of coherent
quantum controllers. We also propose a modified gradient flow,
which is concerned with norm-balanced realizations of such con-
trollers and resembles the steepest descent with respect to a dif-
ferent Riemannian metric (Absil, Mahony, & Sepulchre, 2008). For
this purpose, we combine the Fréchet and Gateaux differentiation
with differential geometric tools (such as Lie groups (Olver, 1993)
and tangent spaces) and related algebraic techniques (Bernstein

& Haddad, 1989; Magnus, 1988; Skelton, Iwasaki, & Grigoriadis,
1998; Vladimirov & Petersen, 2012, 2013a) to employ the analytic
structure of the LQG cost as a composite function of the matrix-
valued variables, whose computation involves ALEs.

A useful feature of the gradient descent approach to the CQLQG
control problem is that, at intermediate steps, it produces stabi-
lizing PR quantum controllers which can be regarded as gradually
improving suboptimal solutions of the problem, and a locally op-
timal solution (if it exists) is achieved asymptotically by moving
along anti-gradient directions with a suitable choice of stepsizes.
To this end, we provide an algorithm for adaptive stepsize selection
for each iteration based on the second-order Gateaux (directional)
derivative of the LQG cost along the gradient. However, the pro-
posed gradient descent algorithm for the CQLQG control problem
requires for its initialization a stabilizing PR quantum controller.
Finding such a controller for an arbitrary given quantum plant is a
nontrivial open problem which has recently been considered in the
frequency domain (Sichani, Petersen, & Vladimirov, 2015). Because
of the lack of a systematic solution for this quantum stabilization
problem, the present algorithm is initialized at a stabilizing PR
quantum controller which is obtained by a random search in the
space defined by the Hamiltonian parameterization of PR con-
trollers. Although a random search of an admissible starting point
is acceptable for low-dimensional problems, the development of
a more systematic approach to this issue is a subject of future
research.

The paper is organized as follows. Section 2 outlines the princi-
pal notation. Section 3 specifies the quantum closed-loop system
being considered. We also revisit the PR conditions for linear quan-
tum systems in this section. Section 4 formulates the CQLQG con-
trol problem. Section 5 specifies the gradient flow for finding local
minima in this problem. Section 6 presents equivalent realizations
and norm-balanced realizations of coherent quantum controllers.
More specifically, Section 6.1 defines equivalence classes gener-
ated by symplectic similarity transformations of coherent quan-
tum controllers. These are used in Section 6.2 which is concerned
with norm-balanced realizations of coherent quantum controllers
and proposes a modified gradient flow. Section 7 describes an
algorithmic implementation of the gradient descent method with
an adaptive line search. Section 7.4 discusses the convergence of
this algorithm. Section 8 provides numerical examples of design-
ing locally optimal CQLQG controllers. Section 9 gives concluding
remarks. Appendices A-H provide proofs of lemmas and theorems
along with subsidiary material.

2. Notation

Vectors are assumed to be organized as columns unless spec-
ified otherwise, and the transpose ()T acts on matrices with
operator-valued entries as if the latter were scalars. For a vector X
of operators Xy, ..., X, and a vector Y of operators Yy, ..., Y;, the
commutator matrix [X, YT] := XYT — (YXT)Tis an (r x s)-matrix
whose (j, k)th entry is the commutator [Xj, Yi] = X;Yi — YiX; of
the operators X; and Y. Furthermore, (-)' := ((-)*) denotes the
transpose of the entry-wise operator adjoint (-)*. When it is applied
to complex matrices, (-) reduces to the complex conjugate trans-

T
pose (-)* = ((-))". Denoted by sym(:) = % and asym(-) :=
T
@ are the symmetrizer and antisymmetrizer of matrices. Also,
we denote by S;, A, and H, := S; + iA, the subspaces of real
symmetric, real antisymmetric and complex Hermitian matrices of

order r, respectively, with i := +/—1 the imaginary unit. Denoted

by]J = [_01 é is a matrix which spans the space A,. Furthermore,
I, denotes the identity matrix of order r, positive (semi-) definite-
ness of matrices is denoted by (3=) >, and ® is the tensor product

of spaces or operators (in particular, the Kronecker product of
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