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a b s t r a c t

For nonlinear systems, we develop a PDE-based predictor-feedback control design, which compensates
actuator dynamics, governed by a transport PDE with outlet boundary-value-dependent propagation
velocity. Global asymptotic stability under the predictor-feedback control law is established assuming
spatially uniform strictly positive transport velocity. The stability proof is based on a Lyapunov-like
argument and employs an infinite-dimensional backstepping transformation that is introduced. An
equivalent representation of the transport PDE/nonlinear ODE cascade via a nonlinear system with
an input delay that is defined implicitly through an integral of the past input is also provided and
the equivalent predictor-feedback control design for the delay system is presented. The validity of the
proposed controller is illustrated applying a predictor-feedback ‘‘bang–bang’’ boundary control law to a
PDE model of a production system with a queue. Consistent simulation results are provided that support
the theoretical developments.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Cascades of partial and ordinary differential equations are
widely used for modeling of complex dynamics in various en-
gineering applications, such as screw extrusion processes in 3D
printing (Diagne & Krstic, 2015), metal cutting processes (Otto
& Radons, 2013), moisture in convective flows (Bresch-Pietri &
Coulon, 2015), populations (Smith, 1993), transport phenomena
in gasoline engines (Bresch-Pietri, Chauvin, & Petit, 2014; Detwiler
& Wang, 2006; Guzzella & Onder, 2009; Jankovic & Magner, 2011;
Kahveci & Jankovic, 2010), crushing-mills (Richard, 2003), produc-
tion of commercial fuels by blending (Chebre, Creff, & Petit, 2010),
and of stick–slip instabilities during oil drilling (Bekiaris-Liberis &
Krstic, 2014; Cai & Krstic, 2015, 2016; Krstic, 2009), to name only
a few. Depending on the application, the PDE state may evolve on
a time-varying domain (Cai & Krstic, 2015, 2016; Diagne & Krstic,
2015; Diagne, Shang, & Wang, 2016a,b) or its transport coefficient
may vary with time (Bresch-Pietri et al., 2014; Otto & Radons,
2013).

The nonlinear predictor-feedback concept, which enables one
to design efficient feedback laws that compensate constant in-
put delays arising in nonlinear systems was originally introduced
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in Krstic (2010a, c) where the PDE backstepping methodology
combined with a Lyapunov analysis was exploited to establish
stability results. For nonlinear systems with time-varying and
state-dependent delays, the analogous control design methodol-
ogy was developed in Bekiaris-Liberis, Jankovic, and Krstic (2012)
and Bekiaris-Liberis and Krstic (2012, 2013a, b), . For linear sys-
tems Karafyllis, Malisoff, de Queiroz, Krstic and Yang (2015) and
Mazenc andMalisoff (2015) proposed alternative prediction-based
approaches. Later, the method was extended to deal with the
stabilization problemof nonlinear systemswith actuator dynamics
governed by a wave PDE with moving boundary that depends on
the ODE state (Cai & Krstic, 2015, 2016).

However, the problem of design of predictor-feedback con-
trollers for compensation of input delays that depend on the
control input itself is left out in most of the existing contri-
butions. As described in Richard (2003), the design of delay-
compensating control laws for such systems of transport PDE/ODE
cascades with input-dependent transport coefficient (that appear
for example when describing the dynamics of crushing-mill pro-
cesses (Richard, 2003), recycling CSTR (Albertos & Garcia, 2012),
and single-phase marine cooling systems (Hansen, Stoustrup, &
Bendtsen, 2013)) remains an open problem. To our knowledge, the
result in Bresch-Pietri et al. (2014), which is motivated by the
dynamical model of fuel to air ratio (FAR) in gasoline engines, is
perhaps the only contribution that covers this particular subject
on delay compensation. Due to the dependency of the prediction
horizon on the future input values a design that completely com-
pensate the input delay does not seem possible.
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The present work deals with the problem of compensation of
transport PDE actuator dynamics with boundary-value-dependent
propagation speed in nonlinear systems. Equivalently, the non-
linear ODE’s actuator dynamics are described as a delayed-input-
dependent input delay. Here, the delay function is implicitly given
by an integral equation, similarly to Bresch-Pietri et al. (2014), but
is dependent on the delayed rather than the current input.

The predictor-feedback control law for both the PDE and the
delay system representations of the PDE–ODE cascade system
is developed. Our contribution stands as the first one in which
actual compensation of a delayed-input-dependent input delay is
achieved. A global stability result of the closed-loop system is
established. The designed compensator is employed for control of
PDE models of production systems with a finite buffer size at the
end of the production chain (Borsche, Colombo, & Garavello, 2010;
Herty, Klar, & Piccoli, 2007; Sun & Dong, 2008).

The paper is organized as follows. In Section 2 the general prob-
lem is described and themain result togetherwith a global stability
proof, based on a PDE representation of the predictor-feedback
control law, is presented in Section 3. An alternative representation
of the actuator dynamics as an implicitly defined delayed-input-
dependent input delay and the associated delay compensator are
given in Section 4. Section 5 is dedicated to the application of
the designed control law to a PDE model of production systems
enabling a delay-compensating ‘‘bang–bang’’ feedback law. Con-
cluding remarks are stated in Section 7.

2. Problem statement and controller design

We consider the transport PDE/nonlinear ODE cascade system
with boundary-value-dependent propagation speed defined as

Ẋ(t) = f (X(t), u(0, t)) , (1)
∂tu(x, t) = v (u(0, t)) ∂xu(x, t), x ∈ (0,D), (2)
u(D, t) = U(t). (3)

where X ∈ Rn, f : Rn
× R → Rn is continuously differentiable

with f (0, 0) = 0, and v : R → R+ is continuously differentiable
with respect to its argument. Eq. (2) represents the actuation path
for the plant (1), located at the boundary x = 0, with an actuation
device acting at the boundary x = D. The initial condition along the
actuation path (2) is defined as

u(x, 0) = u0(x). (4)

We design the following predictor-feedback controller for system
(1)–(3)

U(t) = κ(p(D, t)), (5)

p(x, t) = X(t) +

∫ x

0

1
v(u(y, t))

f (p(y, t), u(y, t))dy. (6)

The implementation of the control law (5), (6) requires measure-
ments of the PDE state u(x, t), x ∈ [0,D]. We emphasize that in
the recent papers (Karafyllis, 2011; Karafyllis & Krstic, 2014), the
implementation issue of predictor feedback is discussed in detail
and various numerical schemes are developed for computation of
predictor feedback laws.

For the system (1)–(3), we state the following assumptions:

Assumption 1. The delayed input-dependent propagation speed
v : R → R+ is continuously differentiable and there exists a
positive constant ε such that

v(α) ≥ ε, for all α ∈ R. (7)

Assumption 2. There exist a smooth positive definite function
Θ and class K∞ functions K1, K2, and K3 such that for the plant
Ẋ = f (X, ω) such that f (0, 0) = 0, the following hold

K1(|X |) ≤ Θ(X) ≤ K2(|X |) (8)
∂Θ(X)

∂X
f (X, ω) ≤ Θ(X) + K3(|ω|), (9)

for all (X, ω)T ∈ Rn+1.
Assumption 2 guarantees that system Ẋ = f (X, ω) is strongly

forward complete with respect to ω.

Assumption 3. System Ẋ = f (X, κ(X)+ω) is input-to-state stable
(ISS) with respect to ω. Moreover, the feedback law κ : Rn

→ R is
continuously differentiable with κ(0) = 0.

The definitions of strong forward completeness and input-to-
state stability are those from Krstic (2010b) and Sontag (1995),
respectively.

3. Main result and stability proof

Theorem 1. Consider system (1)–(3) together with the control law
(5), (6). Under Assumption 1–3, there exists a class KL function L0
such that for all initial conditions for which u0(x) is locally Lipschitz
on [0,D] and which satisfy the compatibility condition u0(D) =

κ (p(D, 0)), there exists a unique solution to the closed-loop system
with X(t) ∈ C1

[0, ∞) and u(x, t) locally Lipschitz on [0,D]× [0, ∞),
and the following holds for all t ≥ 0

|X(t)| + sup
x∈[0,D]

|u(x, t)| ≤ L0

(
|X(0)| + sup

x∈[0,D]

|u0(x)|, t
)

. (10)

The proof of Theorem 1 is established with the help of the
following lemmas.

Lemma 1. The infinite-dimensional backstepping transformation

w(x, t) = u(x, t) − κ (p(x, t)) , (11)

where p(x, t) is defined in (6), combined with the control law defined
in (5), (6), maps the system (1), (2) with the boundary condition (3)
into the following target system

Ẋ(t) = f (X(t), κ (X(t)) + w(0, t)) , (12)
∂tw(x, t) = v(w(0, t) + κ (X(t)))∂xw(x, t), x ∈ [0,D] (13)
w(D, t) = 0. (14)

Proof. Differentiation of (6) with respect to t gives

∂tp(x, t) = f (p(0, t), u(0, t)) −

∫ x

0
f (p(y, t), u(y, t))

×

(
v′(u(y, t))
v2(u(y, t))

∂tu(y, t)
)
dy

+

∫ x

0

1
v(u(y, t))

∂pf (p(y, t), u(y, t))∂tp(y, t)dy

+

∫ x

0

1
v(u(y, t))

∂uf (p(y, t), u(y, t))∂tu(y, t)dy. (15)

Differentiation of (6) with respect to x leads to the following
relation

∂xp(x, t) = −

∫ x

0
f (p(y, t), u(y, t))

(
v′(u(y, t))
v2(u(y, t))

∂yu(y, t)
)
dy

+

∫ x

0

1
v(u(y, t))

∂pf (p(y, t), u(y, t))∂yp(y, t)dy
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