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a b s t r a c t

A new LMI design technique is developed to address the problem of circle criterion-based H∞ observer
design for nonlinear systems. The developed technique applies to both locally Lipschitz as well as
monotonic nonlinear systems, and allows for nonlinear functions in both the process dynamics and output
equations. The LMI design condition obtained is less conservative than all previous results proposed in
the literature for these classes of nonlinear systems. By judicious use of a modified Young’s relation,
additional degrees of freedom are included in the observer design. These additional decision variables
enable improvements in the feasibility of the obtained LMI. Several recent results in the literature are
shown to be particular cases of the more general observer design methodology developed in this paper.
Illustrative examples are given to show the effectiveness of the proposed methodology. The application
of the method to slip angle estimation in automotive applications is discussed and experimental results
are presented.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction and preliminaries

1.1. Introduction

Observer design for nonlinear systems has attracted much re-
search interest in recent years. This is due to the important role of
observers for the estimation of unmeasurable variables, that are
increasingly present in modern real-world applications, such as
intelligent vehicles (Rajamani, 2012), electrical machines (Khalil,
2015), position estimation in industrial systems (Henriksson, Nor-
rlöf, Moberg, Wernholt, & Schön, 2009), and biomedical applica-
tions (Chong, Postoyan, Nesić, Kuhlmann, & Varsavsky, 2012).

✩ A portion of the work in this paper was funded by the US National Science
Foundation GRANT CMMI 1562006. A second portion of the work was supported
by the Inria-Saclay, EPI DISCO. The material in this paper was partially presented
at the 2016 American Control Conference, July 6–8, 2016, Boston, MA, USA. This
paper was recommended for publication in revised form by Associate Editor Denis
Arzelier under the direction of Editor Richard Middleton.
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The emergence of automation in many real world applications
renders the estimation problem very important. In addition to the
estimation of unmeasurable variables, observers play critical roles
in the fields of fault diagnosis, feedback control and automated
event detection.

Although state observer design has been widely investigated in
the literature and numerous methods have been established (Ar-
cak & Kokotovic, 2001; Califano, Monaco, & Normand-Cyrot, 2003;
Fan & Arcak, 2003; Gauthier, Hammouri, & Othman, 1992; Gau-
thier & Kupka, 1994; Khalil, 2002; Kravaris, Sotiropoulos, Geor-
giou, Kazantzis, Xiao, & Krener, 2004, 2007; Krener & Respondek,
1985; Simon, 2006; Thau, 1973), this issue remains a challenge
for the control research community. Several new methods have
been developed in the recent literature (Abbaszadeh & Marquez,
2010; Açikmese & Corless, 2011; Alessandri & Rossi, 2013, 2015;
Andrieu, Praly, & Astolfi, 2009; Astolfi & Marconi, 2015; Astolfi,
Marconi, & Teel, 2016; Ibrir, 2007; Phanomchoeng, Rajamani, &
Piyabongkarn, 2011; Tsinias, 2008; Wang, Astolfi, Marconi, & Su,
2017; Zemouche & Boutayeb, 2013). All these techniques have
been motivated by the lack of a general systematic method to
deal with nonlinear systems. Even if many improvements have
been proposed in the recent years (Açikmese & Corless, 2011;
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Oueder, Farza, Abdennour, &M’Saad, 2012; Zemouche & Boutayeb,
2013), the estimation problem still remains open. Particularly,
for the class of globally Lipschitz nonlinear systems, several LMI
methods have been proposed where each method provides a
new LMI technique. For instance, some techniques are based on
the use of the S-Procedure lemma (Boyd, El Ghaoui, Feron, &
Balakrishnan, 1994); others use Riccati equations (Raghavan &
Hedrick, 1994), and finally some are based on the standard use of
Young’s inequality (Alessandri, 2004). A two degree-of-freedom
observer designmethodhas beenproposed in Arcak andKokotovic
(2001), generalized by Zemouche and Boutayeb (2009). Despite
all these new ways to overcome the effect of the nonlinearities,
the proposed methods remain conservative for some classes of
systems. To improve the existing results, an interesting method
was proposed recently in Chong et al. (2012) by introducing a
diagonalmultipliermatrix as an additional degree of freedom. Such
a technique has been shortly discussed in Fan and Arcak (2003)
for a class of systems with monotonic nonlinearities. Although
the introduction of a diagonal multiplier matrix is interesting and
significant, some improvements remain possible. The main ques-
tion that arises naturally is: why not a non diagonal multiplier
matrix? The answer to this question is one of the main subjects of
this paper. A short and preliminary version of this result has been
presented in Zemouche, Rajamani, Boulkroune, Rafaralahy, and
Zasadzinski (2016) as a conference paper. Indeed, a new relaxed
LMI condition is provided to solve the problem of H∞ observer
synthesis by exploiting Young’s relation in a judicious manner.
This novel way to use Young’s inequality allows to have additional
degrees of freedom in the LMI and to avoid the diagonal form of the
multiplier matrix. Further, the developed results are extended to
nonlinear systems that are monotonic and not necessarily globally
Lipschitz, and further to systems that contain nonlinearities in
the output equation. To clarify the presentation of this paper,
let us note that compared to the preliminary conference version
paper (Zemouche et al., 2016), this extended version contains the
following:

• Nonlinearities in the output equation while the conference
paper had only a linear measurement equation;

• vehicle slip angle estimation which is a real-world applica-
tion and further includes experimental results;

• additional example to show the role of the non diagonal
multiplier matrices;

• extended discussions and some analytic comparisons.

The developed H∞ observer can be applied for many practical
problems. The vehicle slip angle estimation is one of the challeng-
ing problems which can be solved by the method. The feedback
of vehicle slip angle is useful for Electronic Stability Control (ESC)
systems. In situations on low-friction road surfaces, it is useful for
the ESC system to control the vehicle slip angle and prevent the
vehicle slip angle frombeing too high (Phanomchoeng et al., 2011).
However, vehicle slip angle cannot be easilymeasured. The vehicle
slip angle is also not easy to estimate due to the nonlinear tire
model. Both the dynamic and measurement models of the system
are highly nonlinear models (Phanomchoeng et al., 2011).

In this paper, the proposed H∞ observer was used to estimate
the vehicle slip angle based on a nonlinear vehicle model. The
observer is shown to be suitable for a large range of operating con-
ditions. The developed technique is validated with experimental
measurements on a test vehicle, under different road conditions.

The remaining of the paper is organized as follows: after some
useful preliminaries, the problem formulation and the preliminary
result of Zemouche et al. (2016) are introduced in Section 2, in
order to well position what we propose. The main contribution
related to the new LMI observer design method extended to sys-
tems with nonlinear outputs is presented in Section 3. Section 4

presents discussions and comparisons with previous results in the
literature. Two simple but relevant examples are proposed in Sec-
tion 5 to show the efficiency of the proposed design methodology.
Section 6 includes the design of an observer and experimental
results for the application of slip angle estimation in automobiles.
Finally, we end the paper by a conclusion in Section 7.

Notations: Throughout this paper, we use the following notations:

• (⋆) is used for the blocks induced by symmetry;
• AT represents the transposed matrix of A;
• Ir represents the identity matrix of dimension r;
• for a square matrix S, S > 0 (S < 0) means that this matrix

is positive definite (negative definite);

• es(i) =
(
0, . . . , 0,

ith
1 , 0, . . . , 0  

s components

)T
∈ Rs, s ≥ 1 is a vector of

the canonical basis of Rs.

1.2. Some preliminaries

We start by introducing some definitions and preliminaries
which will be used throughout this paper.

Definition 1 (Zemouche & Boutayeb, 2013). Consider two vectors

X =

⎛⎜⎝x1
...

xn

⎞⎟⎠ ∈ Rn and Y =

⎛⎜⎝y1
...

yn

⎞⎟⎠ ∈ Rn.

For all i = 0, . . . , n, we define an auxiliary vector XYi ∈ Rn

corresponding to X and Y as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
XYi =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

y1
...

yi
xi+1
...

xn

⎞⎟⎟⎟⎟⎟⎟⎟⎠
for i = 1, . . . , n

XY0 = X

(1)

Lemma 2 (Zemouche & Boutayeb, 2013). Consider a function
Ψ : Rn

−→ Rn. Then, the two following items are equivalent:

• Ψ is globally Lipschitz with respect to its argument, i.e.,Ψ (X) − Ψ (Y )
 ≤ γΨ

X − Y
, ∀ X, Y ∈ Rn (2)

• for all i, j = 1, . . . , n, there exist functions

ψij : Rn
× Rn

−→ R

and constants γ
ψij

and γ̄ψij such that ∀ X, Y ∈ Rn

Ψ (X) − Ψ (Y ) =

i=n∑
i=1

j=n∑
j=1

ψijHij

(
X − Y

)
(3)

and the functions ψij(.) are globally bounded from above and
below as follows:

γ
ψij

≤ ψij ≤ γ̄ψij (4)

where

ψij ≜ ψij

(
XYj−1 , XYj

)
and Hij = en(i)eTn(j)

Proof. The proof is omitted. See Zemouche and Boutayeb (2013).
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