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a b s t r a c t

This article presents a backstepping solution to the output regulation problem for general linear het-
erodirectional hyperbolic systems with spatially-varying coefficients. The disturbances can act at both
boundaries, distributed in-domain or at the output to be controlled. The latter is defined at a boundary,
distributed or pointwise in-domain andhas not to be available formeasurement. By utilizing backstepping
coordinates it is shown that all design equations are explicitly solvable. This allows a simple determination
of a state feedback regulator, that is implemented by a reference and a disturbance observer. Furthermore,
an easy evaluation of the existence conditions for the resulting output feedback regulator is possible in
terms of the plant transfer behaviour. In order to facilitate the parameterization of the regulator, the
resulting closed-loop dynamics is directly related to the design parameters. The proposed backstepping-
based design of the output feedback regulator is demonstrated for an unstable heterodirectional 4 × 4
hyperbolic system.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In the last years the backstepping approach (see, e. g., Krstic and
Smyshlyaev (2008) and Meurer (2013)) was further developed to
provide systematic methods for the control of hyperbolic systems.
These systems allow to describe transport phenomena with finite
propagation speeds. Consequently, many processes arising in ap-
plications can be modelled by them. Examples are heat exchang-
ers, transmission lines, open channel flows or plug flow chemical
reactors (see Bastin and Coron (2016) for the modelling of these
examples by hyperbolic systems). Starting with the pioneering
work in Krstic (2009a) backstepping results are available for linear
and quasilinear 2 × 2 hyperbolic systems (see Coron, Vazquez,
Krstic, and Bastin (2013) and Vazquez, Krstic, and Coron (2011)) as
well as for systems of n + 1 coupled first-order hyperbolic linear
PDEs (see Meglio, Vazquez, and Krstic (2013)). Recently, these
results are formulated for a general class of linear and quasilinear
heterodirectional hyperbolic systems with an arbitrary number of
transport equations propagating in opposite directions (see Hu,
Meglio, Vazquez, and Krstic (2016) and Hu, Vazquez, Meglio, and
Krstic (submitted for publication)).

An important extension of the backstepping method is the
design of stabilizing compensators, that additionally ensure the
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asymptotic tracking of reference inputs in the presence of dis-
turbances. This amounts to solving an output regulation problem
for distributed-parameter systems (DPS) with unbounded control
and observation (see, e. g., Aulisa and Gilliam (2016), Natarajan,
Gilliam, and Weiss (2014) and Paunonen and Pohjolainen (2014)).
Thereby, observer-based feedforward control provides a flexible
solution, as the output to be controlled need not be measured.
These compensators contain a state feedback regulator, i. e., a state
feedback with a feedforward of the state describing the exoge-
nous signals. Then, the output feedback regulator is obtained by
designing a reference and a disturbance observer for implementing
the state feedback regulator. A constructive design procedure for
these regulators is presented in Xu and Dubljevic (2016) for first-
order hyperbolic systems with bounded control and unbounded
observation. The corresponding stabilization problem was solved
by applying a Riccati equation approach. Nevertheless, the back-
stepping approach is especially well-suited for systematically de-
termining observer-based feedforward regulators. This was soon
recognized by many researchers and led to the results in Aamo
(2013), Anfinsen and Aamo (2015), Deutscher (2017) and Strecker
and Aamo (2016) for 2 × 2 hyperbolic SISO systems and for n+ 1
hyperbolic SISO systems in Anfinsen and Aamo (2016) and Hasan
(2014). Recently, the work Anfinsen and Aamo (2017) solves a
disturbance rejection problem for a general class of heterodirec-
tional hyperbolic MIMO systems with constant coefficients and a
collocated measurement. Thereby, the disturbances and the out-
puts to be controlled are located at the uncontrolled boundary.
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By utilizing the results in Hu et al. (2016) an observer-based
feedforward regulator is derived. Since the approach in Hu et al.
(2016) only applies the backstepping transformation to the states
of the boundary controlled PDEs, a less number of kernel equations
has to be solved in the design.

In this paper, the output regulation problem is solved for gen-
eral linear heterodirectional hyperbolic systems consisting of an
arbitrary number of transport equations propagating in both di-
rections. A systematic solution of this problem is obtained for this
general class of hyperbolic MIMO systems by extending the previ-
ous results in Deutscher (2017) for 2 × 2 hyperbolic SISO systems.
Thereby, spatially-varying coefficients are allowed so that the re-
sults are applicable to awide range of DPS. For the regulator design
the backstepping approach in Hu et al. (submitted for publica-
tion) concerning general linear hyperbolic systems with spatially-
varying coefficients is utilized. Therein, all system states are in-
cluded in the backstepping transformation. As a consequence, a
larger number of kernel equations as in Hu et al. (2016) has to be
solved for determining the integral kernel. However, this approach
has the advantage that it allows a very straightforward solution
of the output regulation problem for general classes of distur-
bances. In particular, the disturbances can act at both boundaries,
distributed in-domain and at the output to be controlled. This is
much more involved when applying the backstepping coordinates
defined in Hu et al. (2016), because integral terms appear in the
resulting target systems. Similar to Deutscher (2017), the design
of the state feedback regulator is significantly simplified by solving
the regulator equations in the backstepping coordinates. Thereby,
the employed backstepping coordinates allow to take a general
class of outputs to be controlled into account. More precisely,
they can be defined distributed, pointwise in-domain or at the
boundaries.

As Hu et al. (submitted for publication) only consider the case of
state feedback control, an extension of these results to the observer
design for an anticollocated measurement is proposed. With this,
a disturbance observer is derived for the estimation of the plant
and disturbance model states. The solvability conditions for the
output regulation problem in question are derived in backstepping
coordinates. Hence, they can easily be evaluated on the basis of the
plant transfer behaviour.

It is shown that all equations for determining the output feed-
back regulator in the backstepping coordinates are solvable in
closed-form. Furthermore, the target systems utilized in the back-
stepping design allow to determine the pointwise closed-loop
solution explicitly. Hence, the resulting closed-loop dynamics and
thus the output regulation can be directly related to the design
parameters. This allows a very transparent parameterization of the
output feedback regulator. As a result, a systematic and general
output regulation design method is obtained for a large class of
hyperbolic systems.

The next section formulates the considered output regulation
problem. Then, Section 3 presents the state feedback regulator
design. In order to estimate the unknown states, a reference and
a disturbance observer is determined in Section 4. These results
are combined in Section 5 to obtain an output feedback regulator.
The proposed backstepping solution of the posed output regulation
problem is illustrated for an unstable heterodirectional 4 × 4
hyperbolic system.

2. Problem formulation

Consider the general linear hyperbolic system

∂tx(z, t) = Λ(z)∂zx(z, t)+A(z)x(z, t)+G1(z)d(t) (1a)
x2(0, t) = Q0x1(0, t) + G2d(t), t > 0 (1b)
x1(1, t) = Q1x2(1, t) + u(t) + G3d(t), t > 0 (1c)

η(t) = x1(0, t), t ≥ 0 (1d)
y(t) = C[x(t)] + G4d(t), t ≥ 0, (1e)

that consists of n coupled transport PDEs (1a) defined on the do-
main (z, t) ∈ (0, 1) × R+ with the state x(z, t) = [x1(z, t) . . .

xn(z, t)]T ∈ Rn, the input u(t) ∈ Rp and the unmeasurable
disturbance d(t) ∈ Rq. In (1) and in the sequel the shorthand
notations ∂t := ∂/∂t and ∂z := ∂/∂z are utilized for the partial
derivatives as well as dz := d/dz for the ordinary derivative. The
matrixΛ(z) in (1a) is given by

Λ(z) = diag(λ1(z), . . ., λn(z)) (2)

with λ1(z) > . . . > λp(z) > 0 > λp+1(z) > . . . > λn(z), z ∈ [0, 1]
and λi ∈ C1

[0, 1], i = 1, 2, . . . , n. This suggests to introduce the
matrices

E1 =

[
Ip
0

]
∈ Rn×p and E2 =

[
0
Im

]
∈ Rn×m (3)

so that the states x1(z, t) = ET
1 x(z, t) ∈ Rp describe the propa-

gation in the negative direction of the spatial coordinate z with
the transport velocities λi(z), i = 1, 2, . . . , p. Accordingly, the
remaining states x2(z, t) = ET

2 x(z, t) ∈ Rm with p+m = n, p,m ≥

1 and the velocities |λi(z)|, i = p+1, . . . , n, take the transport in the
z-direction into account. As a consequence, the system (1) is called
heterodirectional (see Hu et al. (2016)). The matrix A(z) = [Aij(z)]
in (1a) satisfies Aij ∈ C1

[0, 1], i, j = 1, 2, . . . , n and Aii(z) = 0,
z ∈ [0, 1], i = 1, 2, . . . , n. Note that the latter condition means
no loss of generality (see, e. g., Hu et al. (2016)). The known
disturbance input locations are characterized by G1 ∈ (C[0, 1])n×q,
G2 ∈ Rm×q and Gi ∈ Rp×q, i = 3, 4. Furthermore, Q0 ∈ Rm×p

and Q1 ∈ Rp×m are arbitrary matrices. The initial conditions (ICs)
of (1) are x(z, 0) = x0(z) ∈ Rn, z ∈ [0, 1]. As measurement the
anticollocated output η(t) ∈ Rp in (1d) is utilized and y(t) ∈ Rp

represents the output to be controlled, that need not be measured.
This output can be defined at a boundary, pointwise or distributed
in-domain, which is modelled by the formal output operator

C[h] =

l∑
i=1

Cih(zi) +

∫ 1

0
C(z)h(z)dz (4)

for h(z) ∈ Cn with Ci ∈ Rp×n, zi ∈ [0, 1], i = 1, 2, . . . , l, and
C(z) = [cij(z)] ∈ Rp×n with cij piecewise continuous functions.
In the following it is assumed that the resulting output y in (1e)
is independent of the boundary conditions (BCs) (1b) and (1c) if
C(z) = 0, z ∈ [0, 1], in (4).

It is assumed that only the actual value r(t) ∈ Rp of the
reference input is available for the compensator, i.e., an online-
specification of r is considered. Thereby, this exogenous signal and
the disturbances can be represented by the solution of the finite-
dimensional signal model

v̇(t) = Sv(t), t > 0, v(0) = v0 ∈ Rnv (5a)

d(t) = Pdv(t) = P̄dvd(t), t ≥ 0 (5b)

r(t) = Prv(t) = P̄rvr (t), t ≥ 0 (5c)

with Pd ∈ Rq×nv and Pr ∈ Rp×nv . Therein, the spectrum σ (S)
of the diagonalizable matrix S only contains eigenvalues on the
imaginary axis. This allows the modelling of bounded and per-
sistently acting exogenous signals. In particular, the exogenous
signals can be constant or trigonometric functions of time as well
as linear combinations of both signal forms. By introducing S =

bdiag(Sr , Sd) and v = col(vr , vd) one obtains the reference model
v̇r (t) = Srvr (t), vr (0) = vr,0 ∈ Rnr , and the disturbance model
v̇d(t) = Sdvd(t), vd(0) = vd,0 ∈ Rnd , nr + nd = nv . Consequently,
P̄d ∈ Rq×nd and P̄r ∈ Rp×nr have to hold in (5). Furthermore, it is
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