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a b s t r a c t

This manuscript addresses the output regulation problem for a class of scalar boundary controlled
first-order hyperbolic partial integro-differential equation (PIDE) systems with Fredholm integrals. In
particular, with the advantage of the backstepping approach, simple structure systems can be obtained
such that regulator equations for the state feedback regulator design are analyzed and solved in backstep-
ping coordinates. Moreover, the finite time output regulation is achieved. In the observer-based output
feedback regulator design, it is not necessary that the outputs to be controlled belong to the available
output measurements and these outputs can be distributed, point-wise and/or boundary in nature,
while the boundary placed measurements are used for regulator design. For the observer gains design,
a transformation of the ODE–PDE system into an ODE–PDE cascade is considered. It is also shown that the
separation principle holds for the output feedback regulator design and the exponential output regulation
is realized for the resulting stable closed-loop system. Finally, the output regulation results are illustrated
with two numerical simulations: a Korteweg–de Vries-like equation and a PDE–ODE interconnected
system.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Due to the wide area of applications, boundary control and ob-
servation of hyperbolic partial differential equations (PDE) systems
have been active research topics during the last decade, e.g., Di-
agne, Bastin, and Coron (2012) and Krstic and Smyshlyaev (2008).
The pioneering backstepping approach developed for parabolic
PDEs (Bošković, Krstić, & Liu, 2001) has been applied to boundary
controlled hyperbolic systems (Krstic & Smyshlyaev, 2008). The
backstepping based stabilization method was applied to two cou-
pled first order hyperbolic systems in Vazquez, Krstic, and Coron
(2011), and to the general n + 1 case in Di Meglio, Vazquez, and
Krstic (2013) and the more general n + m case in Hu, Di Meglio,
Vazquez, and Krstic (2015). Along the same line, minimum time
control law was developed for n + m coupled hyperbolic PDEs
in Auriol and Di Meglio (2016). Moreover, for the disturbance
rejection problem, adaptive observers were constructed for hyper-
bolic PDEs in Aamo (2013) and Anfinsen and Aamo (2015). The
linear first-order hyperbolic PIDEs considered in this manuscript
were introduced in Krstic and Smyshlyaev (2008), which usually
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arise from two coupled PDEs with one being suitably perturbed.
In Bernard and Krstic (2014), an adaptive output feedback con-
troller was designed to deal with stabilization of PIDEs with un-
known parameters and in Bribiesca-Argomedo and Krstic (2015)
the boundary control concept was extended to the PIDEs setting
with Fredholmoperators that do not exhibit a strict feedback struc-
ture. In this work, state feedback and output feedback regulator
design problems for PIDE systems are addressed.

Recently, state feedback regulators were designed to address
the robust regulation problems for 2 × 2 hyperbolic and wave
equation systems in Deutscher (2016) and Deutscher and
Kerschbaum (2016). Along the line of contributions associated
with results on output feedback regulator designs, the results
in Deutscher (2015) on parabolic systems were extended to con-
struct finite-time output regulators for 2 × 2 hyperbolic systems
in Deutscher (2017). To complement this effort, in this work, the
state and output feedback (using the measurement ym(t) and the
reference signal yr (t)) regulators are designed for a class of the
first-order hyperbolic PIDE systems and cover a large number of
transport processes. The state feedback regulator problem is solved
by constructing the regulator equations in the backstepping coor-
dinates and the corresponding solvability conditions are discussed.
The solution of the output feedback regulator design problem
yields a reference and disturbance observer design. To end this,
this amounts to the stabilization of the disturbance observer error
system in form of a coupled ODE–PDE system.Motivated by results
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in Aamo (2013) for 2 × 2 hyperbolic systems and Deutscher
(2015), a transformation into an ODE–PDE cascade is considered in
this work. The proposed disturbance observer design is based on a
transformation of the PDE observer error subsystem into new co-
ordinates using the backstepping methods. Then, the transformed
observer error system is decoupled into a triangular system in the
backstepping coordinates, so that theODE and PDE subsystems can
be stabilized independently. In new coordinates, the stabilization
of the ODE–PDE observer error subsystem becomes very simple.
This also yields explicit existence conditions for the exponen-
tial convergence of the disturbance observer and these existence
conditions can be checked explicitly in backstepping coordinates.
Finally, it is worth mentioning that the exosystem is extended to
generate polynomial type reference signals and the corresponding
approach solving regulator equations is provided in this work.

In this manuscript, after the problem formulation in Section 2,
the state feedback regulator problem is solved in Section 3.
Section 4 introduces the design of the output feedback regula-
tor, according to the separation principle. Finally, the results are
demonstrated through illustrative simulations in Section 5.

2. Problem formulation

We consider the following hyperbolic PIDE systems on the
domain

{
t ∈ R+, z ∈ (0, 1)

}
presented in Bribiesca-Argomedo and

Krstic (2015):

∂tx(z, t) = ∂zx(z, t) + f (z)x(0, t)

+

∫ z

0
g(z, ξ )x(ξ, t)dξ

+

∫ 1

z
h(z, ξ )x(ξ, t)dξ + g1(z)d1(t)

(1)

x(1, t) = u(t) + g2d2(t) (2)

y(t) = Cx(t) (3)

ym(t) = x(0, t) (4)

with the input u(t) ∈ R. d1(t) ∈ R and d2(t) ∈ R are unmeasurable
process and boundary input disturbances, respectively. f , g and h
are real-valued continuous functions. g1 ∈ C[0, 1] and g2 ∈ R in
(1)–(2) are known functions that characterize the distribution of
disturbances. x(·, t) ∈ H = L2(0, 1), ∀t ∈ R+ denotes the state
variable and then x(·, t) at the point z is x(z, t). H = L2(0, 1) is
a real Hilbert space equipped with the inner product ⟨h1, h2⟩ =∫ 1
0 h1(z)h2(z)dz, ∀h1, h2 ∈ H . Then, the norm is given by ∥x∥2 =

⟨x, x⟩ , ∀x ∈ H . In (3), y(t) ∈ R is the output to be controlled.
The corresponding output operator C may describe point-wise or
distributed in domain outputs, i.e.

y(t) = Cx(t) =

∫ 1

0
c(z)x(z, t)dz (5)

where c(z) =
∑N

i=1ciδ(z − zi), zi ∈ (0, 1) and ci ∈ R, or c(z) ∈

L2(0, 1). The measurement ym(t) ∈ R is different from the con-
trolled output y(t). In particular, it is not necessary that the con-
trolled output y(t) can be measured.

The following scalar hyperbolic PIDE system:

∂tx(z, t) = v(z)∂zx(z, t) + α(z)x(z, t)

+ f̄ (z)x(0, t) +

∫ z

0
ḡ(z, ξ )x(ξ, t)dξ

+

∫ 1

z
h̄(z, ξ )x(ξ, t)dξ + g1(z)d1(t)

on the domain (z, t) ∈ (0, 1) × (0, T ] can be transformed into (1)–
(4) by applying an appropriate change of variables, see Bribiesca-
Argomedo and Krstic (2015). Concomitantly, the resulting bound-
ary conditions and outputs remain the same as in (2)–(4). Hence,
the following results of this manuscript are also valid for this
general system class that describes many transport processes.

To ensure that the plant (1) is stabilizable in finite time, the
following assumption providing sufficient conditions for the coef-
ficients of (1) is given (Bribiesca-Argomedo & Krstic, 2015):

Assumption1. Define the triangles

Tl = {(z, ξ ) ∈ [0, 1] × [0, 1], z ≥ ξ}

Tu = {(z, ξ ) ∈ [0, 1] × [0, 1], z ≤ ξ}

and the spaces Xl = C(Tl;R) and Xu = C(Tu;R) equipped with the
norms

∥h∥Xi = sup
(z,ξ )∈Ti

|h(z, ξ )|, ∀h ∈ Xi, i = l, u

then the coefficients in (1) satisfy: f ∈ C([0, 1];R), g ∈ Xl and h ∈

Xu.Moreover, f , g andh satisfy:max
{
supζ∈[0,1]|f (ζ )|, ∥g∥Xl , ∥h∥Xu

}
< 0.25. In particular, if f (z) ≡ 0, then the coefficients g and h
satisfy: max

{
∥g∥Xl , ∥h∥Xu

}
< 0.5.

Actually, by introducing Assumption 1, the plant is limited
into a certain class of systems with heavily bounded coefficients.
However, for some systems, even though the plant coefficients
are larger than the sufficient conditions, these systems still can
be stabilized, see Section II-E in Bribiesca-Argomedo and Krstic
(2015). Moreover, when some coefficients such as f and h are
zero functions, this limitation is relaxed. For example, in (1),
when h(z, ξ ) ≡ 0, the plant reduces to the system in Krstic
and Smyshlyaev (2008) and is always stabilizable in finite time.
Furthermore, for the case that g and h are only functions of z,
i.e., g(z, ξ ) = g(z) and h(z, ξ ) = h(z), sufficient and necessary
conditions were studied and provided in Coron, Hu, and Olive
(2016).

The disturbances d1(t) and d2(t) in (1), (2) and the reference sig-
nal yr (t) ∈ R to be asymptotically tracked by the controlled output
y(t) can be modeled by the known finite-dimensional exosystem:

v̇(t) = Sv(t), v(0) = v0 ∈ Cnv (6)

d1(t) = pTd1v(t) = rTd1vd(t), t ∈ R+ (7)

d2(t) = pTd2v(t) = rTd2vd(t), t ∈ R+ (8)

yr (t) = qTv(t) = qTr vr (t), t ∈ R+ (9)

where S is a block diagonal matrix S = bdiag(Sd, Sr ) having all
its eigenvalues on the imaginary axis, i.e. iwk where i =

√
−1,

k = 1, . . . , nv and wk can have zero values. Correspondingly,
v = col(vd, vr ) with the signal models v̇d(t) = Sdvd(t), vd(0) =

vd0 ∈ Cnd , and v̇r (t) = Srvr (t), vr (0) = vr0 ∈ Cnr , nd + nr = nv .
In particular, we can design the above matrix S to have the

form: S = bdiag(Sd, Sr ) = bdiag(Sm, Sn) and the block Sn is a
nilpotentmatrix with dimension nn, i.e. its spectrum: σ (Sn) = 0. In
this manuscript, we assume Sn is a sub-block matrix in the matrix
Sr . The matrix Sm is a diagonalizable matrix with dimension nm.
Obviously, we have nn +nm = nv . In particular, in this manuscript,
Sn is given by

Sn =

⎡⎢⎢⎢⎢⎣
0 0 · · · 0 0
1 0 · · · 0 0
0 2 · · · 0 0
...

...
. . .

...
...

0 0 · · · (nn − 1) 0

⎤⎥⎥⎥⎥⎦ . (10)
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