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a b s t r a c t

The finite impulse response (FIR) filter and infinite impulse response filter including the Kalman filter (KF)
are generally considered as two different types of state estimation methods. In this paper, the sequential
Bayesian philosophy is extended to a filter design using a fixed amount of most recent measurements,
with the aimof exploiting the FIR structure and unifying some basic FIR filterswith the KF. Specifically, the
conditional mean and covariance of the posterior probability density functions are first derived to show
the FIR counterpart of the KF. To remove the dependence on initial states, the corresponding likelihood is
furthermaximized and realized iteratively. It shows that themaximum likelihoodmodification unifies the
existing unbiased FIR filters by tuning a weighting matrix. Moreover, it converges to the Kalman estimate
with the increase of horizon length, and can thus be considered as a link between the FIR filtering and the
KF. Several important properties including stability and robustness against errors of noise statistics are
illustrated. Finally, a moving target tracking example and an experiment with a three degrees-of-freedom
helicopter system are introduced to demonstrate effectiveness.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

As one of the classical methods, the Bayesian filter provides
a general solution to the state estimation problem, i.e., inferring
a process xn:0 := {xn, xn−1, . . . , x0} (known as states) from a set
of observations yn:0 := {yn, yn−1, . . . , y0}. Let p(xn|yn:0) denote
the probability density function (pdf) of xn conditional on yn:0, a
posterior mean estimate is then given by

x̂n|n ≜ E[xn|yn:0] =

∫
xnp(xn|yn:0)dxn, (1)

where E[x|y] is the expected value of x given y. If we assume
that the states follow a hidden first-order Markov process with
transition pdf p(xn|xn−1) and likelihood p(yn|xn), the posterior pdf
p(xn|yn:0) in (1) can be efficiently computed in a recursive manner
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with the well known recursions between prediction and updat-
ing (Anderson & Moore, 1979):

p(xn|yn−1:0) =

∫
p(xn|xn−1)p(xn−1|yn−1:0)dxn−1, (2)

p(xn|y0:n) ∝ p(yn|xn)p(xn|yn−1:0). (3)

In this paper, we mainly focus on the linear Gaussian state–
space model, where the Kalman filter (KF) provides a good inter-
pretation of the sequential Bayesian filtering. For such a model,
there is no filter other than the KF that provides optimal estimate
in a simpler and faster way (Gelb, 1974). Consequently, numerous
methods have been proposed to modify or extend the original
algorithm to deal with some unsatisfied environments such as
nonlinear models, missing measurements, uncertain parameters,
and correlated noise sources (Abdallah, Gning, & Bonnifait, 2008;
Cox, 1956; Karasalo & Hu, 2011; Simon, 2006; Yang & Yin, 2017),
which have been proven to be effective in both theory and ap-
plication. A common feature of these methods is that the current
state is estimated based on all the past measurements. That is,
we are interested in computing p(xn|yn:0). When model errors
exist and when the filter operates over long time intervals, this
operation may make estimates fall unacceptably away from the
true values (Jazwinski, 1968). By analyzing the optimal filtering
problem along the lines of the KF theory, Jazwinski concluded
in Jazwinski (1970) that many flaws of the KF are due to this
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infinite impulse response (IIR) structure. Accordingly, another type
of method named as finite impulse response (FIR) filter or limited
memory filter has been proposed, which estimates states based
only on a fixed amount of most recent data (Kwon & Han, 2006).
In contrast to the IIR structure, the FIR counterpart exhibits many
intrinsic advantages such as bounded-input bounded-output sta-
bility and better robustness against both numerical errors and
temporal model uncertainties (Ahn, 2014; Kwon, Kim, & Han,
2002; Shmaliy, 2010, 2011; Zhao, Huang, Shmaliy, & Liu, 2015).

In spite of tremendous progress achieved to date, the FIR state
estimation remains unconventional, and the gap between it and
the well-established Kalman filtering still exists. The main reason
we believe is that the Bayesian state estimation based on finite
measurements has not been addressed systematically. Specifically,
the existing FIR filters are obtained from different perspectives,
and no unification study is available. Because of that, the FIR
counterpart of KF has not been reported so far, and the existing
unbiased FIR filters turn out to have completely different formu-
lations (Kwon et al., 2002; Shmaliy, 2011; Zhao, Huang, et al.,
2015; Zhao, Shmaliy, & Liu, 2015, 2016), which are not easy to
be understood. The necessity of concise and explicit FIR filtering
framework motivates our present study.

In this paper, we bridge the gap and extend the sequential
Bayesian philosophy to a fixed amount of measurements in linear
state–space systems. The main contributions of this paper are as
follows. (1) As a FIR counterpart of the KF, the posterior pdf is
obtained based on finite measurements and known initial distri-
butions. (2) To remove the dependence on initial states of each
estimation horizon, the batch maximum likelihood (ML) estimate
is derived. It shows that the ML algorithm unifies the existing
unbiased FIR filters (the unbiased FIR filter (Shmaliy, 2011) that
omits noise statistics and the optimal unbiased solution proposed
in Zhao et al. (2015)) with the weighted least square form. (3)
With the concern of computational cost, an iterativeML realization
is derived. Its difference from the KF in each iteration is shown
analytically, andmoreover, several useful properties including sta-
bility and improved robustness are demonstrated.
Notations: Throughout this paper, RK denotes the K dimensional
Euclidean space,E[·] represents the statistical expectation, Ia×a and
0a×a refer to identity matrix and zero matrix of a × a dimensions,
tr(·) denotes the trace operator, N (x, P) is the Gaussian pdf with
mean x and variance P , and diag(b1 · · · bm) denotes a diagonal
matrix with diagonal elements b1, . . . , bm.

2. Preliminaries and problem formulation

We formulate the state estimation problem under the frame-
work of a linear state–space model:

xn = Fnxn−1 + Gnwn, (4)
yn = Hnxn + vn, (5)

where xn ∈ Rκ is the state, yn ∈ Rρ is the measurement, Gn ∈

Rκ×τ , Fn ∈ Rκ×κ and Hn ∈ Rρ×κ are the system matrices, and
wn ∈ Rτ and vn ∈ Rρ denote the process and measurement noises
that are white Gaussian with zero mean and known covariance,
i.e., wn ∼ N (0,Qn) and vn ∼ N (0, Rn). It is assumed that wn, vn
and x0 ∼ N (x̄0, P0) are pairwise uncorrelated at each sampling
instant. To construct a stable filter, [Fn GnQ

1/2
n ] and [Fn Hn] are

assumed to be uniformly stabilizable and uniformly detectable,
where Q 1/2

n (Q 1/2
n )T = Qn (Anderson & Moore, 1981).

With models (4) and (5), we can compute the posterior pdf
p(xn|yn:0) using the KF, which is a full-information based strategy.
If the model is perfect, this method is the best without doubt.
Otherwise, the response to unpredictable dynamics may render
an unrealistic small filter gain, by which the measurement infor-
mation is unreasonably ignored, especially when a filter operates

over a long time period. Defining a set of measurements yn:m :=

{yn, . . . , ym}, the problem considered can now be formulated as
follows: Given the linear Gaussian state–space model (4) and (5),
we show the FIR counterpart of the KF by calculating the posterior
pdf in a finite horizon with the aim of giving an insight into the
FIR structure. To remove the effect of initial values with respect
to each estimation horizon, we further maximize the likelihood
p(yn:m|xn), and derive its fast prediction/correction formulation.
Some important properties as well as the trade-off between the
proposed ML FIR algorithm and the KF will also be illustrated.

3. FIR counterpart of the KF

In this section, the posterior pdf is calculated in a finite horizon
with known initial distribution to show the relationships between
the FIRmethods andKF. Toward this end, the extended state–space
model that resembles the original model (4) and (5) over the time
interval [m = n − N + 1, n] is constructed below, where N is the
horizon length.

3.1. Extended state–space model

Using the forward-in-time solution and transforming all the
state dynamic and measurement equations within [m, n] with
respect to the variable xm−1, it is not difficult to find

Xn,m = Fn,mxm−1 + Gn,mWn,m, (6)
Yn,m = Hn,mxm−1 + Ln,mWn,m + Vn,m, (7)

where Xn,m = [xTn, x
T
n−1, . . . , x

T
m]

T , Wn,m = [wT
n , wT

n−1, . . . , w
T
m]

T ,
Yn,m = [yTn, y

T
n−1, . . . , y

T
m]

T and Vn,m = [vT
n , vT

n−1, . . . , v
T
m]

T are the
extended vectors. The extended matrices Fn,m, Gn,m, Hn,m and Ln,m
are given as, respectively,

Fn,m =
[
(Fm

n )T , (Fm
n−1)

T , . . . , F T
m

]T
,

Gn,m =

⎡⎢⎢⎢⎢⎣
Gn FnGn−1 · · · Fm+2

n Gm+1 Fm+1
n Gm

0 Gn−1 · · · Fm+2
n−1 Gm+1 Fm+1

n−1 Gm
...

...
. . .

...
...

0 0 · · · Gm+1 Fm+1Gm
0 0 · · · 0 Gm

⎤⎥⎥⎥⎥⎦ ,

Hn,m = H̄n,mFn,m, and Ln,m = H̄n,mGn,m with H̄n,m =

diag
(
Hn,Hn−1, . . . ,Hm

)
is a diagonal matrix and F j

i = FiFi−1 · · · Fj.
Generally, i ⩾ j and F j

i = Fj when i = j. Note that if N = n, xm−1
becomes the initial state x0, and the finite estimationhorizon [m, n]
becomes the full observation interval [1, n]. Here, we exclude y0 as
p(x0) is known.

3.2. Posterior estimation

Using the extended state dynamic equation (6), the transition
equation from xm−1 to xn can be represented as

xn = Fm
n xm−1 + Wn,m, (8)

where Wn,m = Ḡn,mWn,m, and Ḡn,m ≜ [Gn FnGn−1 . . .
Fm+2

n Gm+1 Fm+1
n Gm] denotes the first row vector of Gn,m. By mov-

ing Gn,mWn,m from the right-hand side of (8) to the left-hand
side, dividing both sides with Fm

n , and substituting it into (7), the
measurement equation becomes

Yn,m = H̃n,mxn + Ln,m, (9)

where H̃n,m = Hn,m(Fm
n )−1 and Ln,m = (Ln,m − H̃n,mḠn,m)Wn,m +

Vn,m. Here, Fm
n is assumed to be invertible and we will show

how to remove this assumption later. Since Wn,m and Vn,m are
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