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a b s t r a c t

A linearized endgame interception scenario along a line between a single evading target and n pursuers
is considered, in which the adversaries’ controls are bounded and have arbitrary-order dynamics, and the
evader’s maneuvers are not known a priori to the pursuing team. To determine the merit in utilizing
multiple interceptors, in terms of their capability to impose point capture, a capturability analysis is
performed, presenting necessary and sufficient conditions for the feasibility of point capture for any
admissible evader maneuver. It is shown that the pursuing team is capable of guaranteeing point capture
if and only if it consists of at least one pursuer capable of independently imposing point capture. This
requirement is independent of the number of pursuers, leading to the conclusion that it cannot be relaxed
by increasing the number of interceptors or by anymanner of cooperation, in terms of coordinatedmotion,
between the pursuers.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Cooperative strategies are becoming more and more popular
with the continuing evolution and advancement in decision mak-
ing capabilities of autonomous vehicles. Utilizing multiple agents
to perform a given task can be beneficial even in cases when the
goal is achievable by a single agent. With regard to interception
engagements of an evading target, through shared information
and coordinated actions the capability requirements and/or the
number of required agents may be relaxed and reduced, respec-
tively. It is therefore a great point of interest, when analyzing
interception engagements, to discern under what conditions the
evader’s capture can be guaranteed, and whether or not these
conditions are dependent on the number of pursuers.

Isaacs, in his study of pursuit-evasion games (Isaacs, 1965),
was the first to obtain explicit conditions for capture in conflicts
between a single pursuer and a single evader. The construction of
the capture zone’s boundary provided the set of initial conditions
from which the pursuer was capable of guaranteeing the evader’s
capture, given the engagement parameters. An example of a game
between adversaries with maneuverability constraints was pre-
sented by Isaacs in the form of the so-called game of two cars.
This planar engagement includes adversaries which have constant
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speeds, minimum turn radii and no control dynamics. Addition-
ally, each adversary has knowledge only of its opponent’s current
position and attitude. In Isaacs’ analysis of this game ‘‘capture’’
was defined by the pursuer reaching some non-negative distance
from the evader and the pursuer was assumed to be faster than
the evader. This was later completed in Meier (1969), in which the
case of a slower pursuer was considered. The first to focus on the
required capabilities for guaranteeing capture of an evading target
was Cockayne (1967). He proved that the pursuer in the game of
two cars can capture the evader (achieve position coincidence)
from any initial geometry if and only if it has a speed advantage
and is at least as maneuverable as the evader. Cockayne stated that
these conditions should coincidewith Isaacs’ results in the game of
two cars with the capture radius set to zero. Rublein (1972) later
extended Cockayne’s work to addressmotion in three dimensional
space. He showed that a sufficient condition for guaranteeing point
capture is the pursuer’s superiority both in speed and in maneu-
verability. In Borowko and Rzymowski (1984) an inverse study
to Cockayne (1967) was presented, concerning the capabilities
required in order to guarantee successful evasion from a pursuer.
The author proved that the evader in the gameof two cars can avoid
capture for any initial conditions if and only if one of the following
holds: (a) the evader has a speed advantage and its maximal
maneuver capability is greater than or equal to that of the pursuer
times the pursuer-to-evader speed ratio, (b) the evader’s speed
is equal to the pursuer’s and it has a maneuverability advantage.
These results together with those presented in Cockayne (1967)
lead to the conclusion that if the evader has a speed disadvantage,
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but its maximal maneuver capability is greater than that of the
pursuer times the pursuer-to-evader speed ratio, then there exist
some initial conditions from which the pursuer can guarantee the
evader’s capture. An extension of this work to a planar case of n
pursuers vs. a single evader was presented in Rzymowski (1984).
Itwas shown that if, relative to eachpursuer, the evader has a speed
advantage and its maximal maneuver capability is greater than or
equal to that of any pursuer times the corresponding pursuer-to-
evader speed ratio it can avoid capture indefinitely.

There have been various other publications discussing cap-
turability of a single target by multiple pursuers, with varying
engagement formulations and capture definitions. In Bopardikar,
Bullo, and Hespanha (2009) a cooperative strategy is proposed for
the confinement of a more maneuverable but slower evader by a
teamof identical pursuers. It is shown that, given the non-zero turn
radius and capture radius of the pursuers and the evader/pursuer
speed ratio, there exists a minimum number of pursuers required
in order to guarantee successful confinement. A similar analysis
is performed in Chen, Zha, Peng, and Gu (2016) for a different
multi-player pursuit-evasion game: a team of pursuers endeavors
to capture (impose position coincidence) a single target in the
plane, all of which have constant speeds and instantaneous turn
capability. In this case the capturability analysis is extended to
include the initial conditions from which capture may be guaran-
teed. Another method used in the development of pursuit strate-
gies for multiple pursuers intercepting a single target is Voronoi
partitioning (Bakolas & Tsiotras, 2012; Zhou, Zhang, Ding, Huang,
Stipanović, & Tomlin, 2016). In Bakolas and Tsiotras (2012) a cap-
turability condition is derived for a simple planar pursuit-evasion
scenario inwhich each of the adversaries has bounded speed and is
capable of instantaneous turns. In Zhou et al. (2016) a cooperative
pursuit strategy is developed for a similar problem inwhichmotion
is restricted to a convex planar domain. It is shown that under the
proposed strategy capture (defined by the evader entering a finite
radius) is guaranteed. Generally, as is the case in these presented
works, the capturability conditions are dependent on the proposed
strategies of the adversaries and may therefore be more stringent
than actually needed under optimal play.

In scenarioswhere during the endgame the adversaries’ motion
is near their respective collision courses the kinematics of the en-
gagement can be linearized relative to some fixed frame (Zarchan,
1994). For such cases a point of reference with regard to cap-
turability is once again solutions to games of pursuit. Existing
solutions to linear pursuit-evasion games of a single pursuer vs.
a single evader with bounded controls also include variations on
the order of the players’ control dynamics as well as the number
of control inputs (Gutman, 1979; Gutman & Leitmann, 1976; Qi,
Liu, & Tang, 2011; Shima, 2005; Shima & Golan, 2006; Shima &
Shinar, 2002; Shinar, 1981; Turetsky & Shinar, 2003). An analysis
of a class of linear time-varying feedback pursuit strategies in the
same framework was presented in Turetsky (2008), focusing on
scenarios in which point capture is guaranteed.

These previous studies have yielded important conclusions
with regard to the necessary and sufficient requirements from
interceptors in 1-on-1 engagements. Following these works, and
considering interception scenarios with multiple pursuers, it is
of interest to examine the necessary and sufficient conditions for
capture in a general n-on-1 engagement, the results of which have
important implications on the merits of utilizing a multiplicity of
pursuers.

This paper presents an analytical study of the conditions for
the feasibility of exact capture in an n-on-1 linearized endgame
engagement along a line in which the adversaries’ kinematics
and control dynamics are represented together by arbitrary-order
time-variant linear systems. Rather than solving a general n-on-1
pursuit-evasion game, we adopt a reachability approach, thereby

Fig. 1. Linear n-on-1 engagement scheme.

avoiding the need to first define optimal strategies for the adver-
saries. It is shown that thepursuing team is capable of guaranteeing
point capture if and only if it consists of at least one pursuer capa-
ble of independently imposing point capture. This requirement is
independent of the number of pursuers, leading to the conclusion
that it cannot be relaxed by increasing the number of interceptors
or by any manner of cooperation, in terms of coordinated motion,
between the pursuers.

The remainder of the paper is structured as follows: In Section 2
the formulation of the interception engagement and itsmathemat-
icalmodel are presented. Next, general conditions for the existence
of a capture zone are derived in Section 3, followed by concluding
remarks in Section 4.

2. Linear n-on-1 engagement formulation

Consider the endgame of a planar interception engagement of a
single evader by a group of n pursuers, in which it is assumed (as is
common in endgamemissile interception engagements, see Shima
& Shinar, 2002; Zarchan, 1994) that

• the adversaries can be regarded as point masses with lin-
ear arbitrary-order control dynamics, having multiple de-
coupled bounded control inputs, the bounds of which are
known functions of time,

• the adversaries’ motion is restricted to a plane and their
speeds are known functions of time, which are not neces-
sarily equal,

• the adversaries are all near head-on or tail-chase and their
motion can be linearized around a common fixed reference
line,

as depicted in Fig. 1. V and a denote the speed along X and the
acceleration normal to X , respectively, and y denotes the normal
displacement relative to X . We define the group of adversaries
G = {P1, P2, . . . , Pn, E}, the control input tags N j

c = {1, 2, . . . , nj
c}

for each j ∈ G and the pursuer tags N = {1, 2, . . . , n}. Under these
assumptions the lateral maneuvers do not affect the horizontal
velocities, but only the vertical speeds, relative to the reference
line. Such would be the case in realistic scenarios which include
multiple pursuers launched from a single platform (e.g. aircraft)
and point defense (e.g. ballistic missile defense). As a result, the
kinematics along X are solved, yielding

ri(t) = roi −

∫ t

to
Vci (ξ )dξ, i ∈ N, (1)

where ri is the ith pursuer-to-evader range along X . to is the initial
time and roi and Vci (t) are, respectively, the initial ith pursuer-to-
evader range and the positive closing speed between the ith pur-
suer and the evader, both measured along the common reference
line (for near head-on Vci (t) ≈ VPi (t)+VE(t) and for near tail-chase
Vci (t) ≈ VPi (t) − VE(t), where for the latter VPi (t) > VE(t ∀t ≥
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