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a b s t r a c t

In this paper, we study a distributed continuous-time design for aggregative games with coupled
constraints in order to seek the generalized Nash equilibrium by a group of agents via simple local
information exchange. To solve the problem, we propose a distributed algorithm based on projected
dynamics and non-smooth tracking dynamics, even for the case when the interaction topology of the
multi-agent network is time-varying. Moreover, we prove the convergence of the non-smooth algorithm
for the distributed game by taking advantage of its special structure and also combining the techniques
of the variational inequality and Lyapunov function.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The seek of generalized Nash equilibria for non-cooperative
games with coupled constraints has been widely investigated due
to various applications in natural/social science and engineering
(such as telecommunication power allocation and cloud compu-
tation Ardagna, Panicucci, & Passacantando, 2013; Pang, Scutari,
Facchinei, & Wang, 2008). Significant theoretic and algorithmic
achievement has been done, referring to Pavel (2007), Altman and
Solan (2009), Arslan, Demirkol, and Yueksel (2015) and Facchinei
and Kanzow (2010).

Distributed equilibrium seeking algorithms guide a group of
players or agents to cooperatively achieve the Nash equilibrium
(NE), based on players’ local information and information ex-
change between their neighbors in a network. The NE seeking
may be viewed as an extension of distributed optimization prob-
lems, which have been widely studied recently (see Kia, Cortés, &
Martínez, 2015; Nedić & Ozdaglar, 2009; Shi, Johansson, & Hong,
2013), and on the other hand, distributed optimization problems
can be handled with a game-theoretic approach (Li & Marden,
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2013). In fact, in the study of complicated behaviors of strategic-
interacted players in large-scale networks, it is quite natural to
investigate game theory in a distributed way. For example, dis-
tributed convergence to NE of zero-sum games over two subnet-
works was obtained in Lou, Hong, Xie, Shi, and Johansson (2016).
Moreover, a distributed fictitious play algorithm was proposed
in Swenson, Kar, and Xavier (2015), while a gossip-based approach
was employed for seeking an NE of noncooperative games in Sale-
hisadaghiani and Pavel (2016).

Aggregative games have become an important type of game
since the well-known Cournot model was proposed, and have
recently been studied in the literature, referring to (Cornes &
Hartley, 2012; Jensen, 2010), for its broad application in pub-
lic environmental models (Cornes, 2016), congestion control of
communication networks (Barrera & Garcia, 2015), and demand
responsemanagement of power systems (Ye & Hu, 2017). Usually,
linear aggregation functions and quadratic cost functions in such
gameswere considered, for example, in Paccagnan, Gentile, Parise,
Kamgarpour, and Lygeros (2016), Parise, Gentile, Grammatico and
Lygeros (2015) and Ye and Hu (2017). Also, a recent result was
given for distributed discrete-time algorithms to seek the NE of an
aggregative game with time-varying topologies in Koshal, Nedić
and Shanbhag (2016).

The objective of this paper is to develop a novel distributed
continuous-time algorithm for nonlinear aggregative games with
linear coupled constraints and time-varying topologies. In recent
years, continuous-time algorithms for distributed optimization be-
come more and more popular (Kia et al., 2015; Shi et al., 2013;
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Yi, Hong, & Liu, 2016), partially because they may be easily imple-
mented in continuous-time or hybrid physical systems. However,
ideas and approaches for continuous-time design may not be the
same as those for the discrete-time one. Thanks to various well-
developed continuous-timemethods, distributed continuous-time
algorithms or protocols keep being constructed, but the (conver-
gence) conditions may be different from those in discrete-time
cases.

In our problem setup, every player tries to optimize its local
cost function by updating its local decision variable. The cost func-
tion depends on not only the local variable but also a nonlinear
aggregation. Moreover, feasible decision variables of players are
coupled by linear constraints. Existing distributed algorithms for
aggregative games (Koshal et al., 2016; Ye&Hu, 2017) cannot solve
our problems since they did not consider coupled constraints. The
contribution of this paper can be summarized as follows:

• The aggregative game model in this paper generalizes the
previous ones in Paccagnan et al. (2016) and Ye and Hu
(2017) by allowing nonlinear aggregation term and non-
quadratic cost functions, and also those in Koshal et al.
(2016) by considering coupled constraints. In addition, the
considered game can be non-potential.

• Inspired from distributed average tracking dynamics and
projected primal–dual dynamics, we take advantage of
continuous-time techniques to solve the distributed prob-
lem. With the new idea, our algorithm is described as a
non-smooth multi-agent system with two interconnected
dynamics: a projected gradient one for the equilibriumseek-
ing, and a consensus one for the synchronization of the ag-
gregation and the dual variables. In addition, our algorithm
need not solve the best response subproblems, different
from those in Parise et al. (2015), and can keep private some
information about the cost functions, local decisions, and
constraint coefficients.

• We provide a method to prove the correctness and conver-
gence of the continuous-time algorithm by combining the
techniques from variational inequality theory and Lyapunov
stability theory.

Notations: Denote Rn as the n-dimensional real vector space;
denote 1n = (1, . . . , 1)T ∈ Rn, and 0n = (0, . . . , 0)T ∈ Rn. Denote
col(x1, . . . , xn) = (xT1, . . . , x

T
n )

T as the column vector stacked with
column vectors x1, . . . , xn, ∥ · ∥ as the Euclidean norm, and In ∈

Rn×n as the identity matrix. Denote ∇f as the gradient vector of a
function f and J F as the Jacobian matrix of a map F . Let C1 ± C2 =

{z1 ± z2 | z1 ∈ C1, z2 ∈ C2} be the Minkowski sum/minus of
sets C1 and C2, and rint(C) be the relative interior of a convex set
C (Rockafellar & Wets, 1998, page 25 and page 64).

2. Preliminaries

In this section, we give some preliminary knowledge related to
convex analysis, variational inequality, and graph theory.

A set C ⊆ Rn is convex if λz1 + (1 − λ)z2 ∈ C for any z1, z2 ∈ C
and 0 ≤ λ ≤ 1. For a closed convex set C , the projection map
PC : Rn

→ C is defined as

PC (x) ≜ argmin
y∈C

∥x − y∥.

The following two basic properties hold:

(x − PC (x))T (PC (x) − y) ≥ 0, ∀ y ∈ C , (1)
∥PC (x) − PC (y)∥ ≤ ∥x − y∥, ∀ x, y ∈ Rn. (2)

For x ∈ C , the tangent cone to C at x is

TC (x) ≜
{

lim
k→∞

xk − x
tk

⏐⏐⏐⏐ xk ∈ C, tk > 0, and xk → x, tk → 0
}
.

and the normal cone to C at x is

NC (x) ≜ {v ∈ Rn
| vT (y − x) ≤ 0, for all y ∈ C}.

Lemma 1 ( Rockafellar & Wets 1998, Theorem 6.42). Let C1 and C2
be two closed convex subsets of Rn. If 0 ∈ rint(C1 − C2), then

TC1∩C2 (x) = TC1 (x) ∩ TC2 (x), ∀ x ∈ C1 ∩ C2.

A function f : Rn
→ R is convex if f (λz1 + (1 − λ)z2) ≤

λf (z1) + (1 − λ)f (z2) for any z1, z2 ∈ C and 0 ≤ λ ≤ 1. A map
F : Rn

→ Rn is said to be monotone (strictly monotone) on a set Ω
if (x − y)T (F (x) − F (y)) ≥ 0 (> 0) for all x, y ∈ Ω and x ̸= y. A
differentiable map F is monotone if and only if the Jacobian matrix
J F (x) (not necessarily symmetric) is positive semidefinite for each
x (Rockafellar & Wets, 1998, Theorem 12.3).

Given a subset Ω ⊆ Rn and a map F : Ω → Rn, the variational
inequality, denoted by VI(Ω, F ), is to find a vector x ∈ Ω such that

(y − x)T F (x) ≥ 0, ∀ y ∈ Ω,

and the set of solutions to this problem is denoted by SOL(Ω, F )
(Facchinei & Pang, 2003). When Ω is closed and convex, the solu-
tion of VI(Ω, F ) can be equivalently reformulated via projection as
follows:

x ∈ SOL(Ω, F ) ⇔ x = PΩ (x − F (x)). (3)

Lemma 2 ( Facchinei & Pang, 2003, Corollary 2.2.5, and Theorem
2.2.3). Consider VI(Ω, F ), where the set Ω ⊂ Rn is convex and the
map F : Ω → Rn is continuous. The following two statements hold:

(1) if Ω is compact, then SOL(Ω, F ) is nonempty and compact;
(2) if Ω is closed and F (x) is strictly monotone, then VI(Ω, F ) has

at most one solution.

The following lemma about a regularized gap function is impor-
tant for our results.

Lemma 3 ( Fukushima, 1992). Let F : Rn
→ Rn be a differentiable

map and H(x) = PΩ (x − F (x)). Define g : Rn
→ R as

g(x) = (x − H(x))T F (x) −
1
2
∥x − H(x)∥2.

Then g(x) ≥ 0 is differentiable and its gradient is

∇g(x) = F (x) + (J F (x) − In)(x − H(x)).

Furthermore, it is known that the information exchange among
agents can be described by a graph. A graph with node set V and
edge set E is written as G = (V, E) (Godsil & Royle, 2001). If agent
i ∈ V can receive information from agent j ∈ V , then (j, i) ∈ E
and agent j belongs to agent i’s neighbor set Ni = {j | (j, i) ∈ E}.
G is said to be undirected if (i, j) ∈ E ⇔ (j, i) ∈ E , and G is said
to be connected if any two nodes in V are connected by a path (a
sequence of distinct nodes in which any consecutive pair of nodes
share an edge).

3. Problem formulation

Consider an N-player aggregative game with coupled con-
straints as follows. For i ∈ V ≜ {1, . . . ,N}, the ith player aims to
minimize its cost function Ji(xi, x−i) : Ω → R by choosing the local
decision variable xi from a local strategy set Ωi ⊂ Rni , where x−i ≜
col(x1, . . . , xi−1, xi+1, . . . , xN ), Ω ≜ Ω1 × · · · × ΩN ⊂ Rn and n =∑

i∈Vni. The strategy profile of this game is x ≜ col(x1, . . . , xN ) ∈ Ω .
The aggregation map σ : Rn

→ Rm, to specify the cost function as
Ji(xi, x−i) = ϑi(xi, σ (x)) with a function ϑi : Rni+m

→ R, is defined
as

σ (x) ≜
1
N

N∑
i=1

ϕi(xi), (4)
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