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a b s t r a c t

This paper presents a new distributed observer for interconnected multi-rate systems. The developed
observer belongs to the family of set-membership estimators, and the use of zonotopes is proposed
to mathematically describe the sets, a choice motivated by the available mathematical background
in operations such as intersections, combinations and linear manipulations. The main features of the
proposed distributed observer are (a) the actual state of any subsystem always belongs to the computed
sets; (b) the volume of these sets is minimized in real time; (c) under equivalent assumptions, the
performance of the observer approaches to that of an analogous distributed Kalman filter.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The great development of communication technologies over
the last two decades has led to flexible configurations that reduce
installation and maintenance costs in automation. As a result, new
communication architectures find their applications in modern
interconnected systems such as power grids, intelligent buildings,
or traffic control systems, to give some examples.

In such systems distributed state estimation plays a key role,
for having accurate and reliable estimations is crucial both in
monitoring and operation tasks. Within this context, Distributed
Kalman Filtering (DKF) has shown itself as an efficient and flexi-
ble adaptation of the Kalman filter (Khan & Moura, 2008; Song,
Zhu, Zhou, & You, 2007), and it has been combined with con-
sensus (Battistelli & Chisci, 2016; Kamal, Ding, Song, Farrell, &
Roy-Chowdhury, 2011; Olfati-Saber, 2009), and diffusion strate-
gies (Cattivelli & Sayed, 2010). Consensus filters (Matei & Baras,
2012; Millán, Orihuela, Vivas, & Rubio, 2012; Orihuela, Millán,
Vivas, & Rubio, 2013; Stanković, Stanković, & Stipanović, 2009),
H∞ filtering (Shen, Wang, & Hung, 2010) and moving-horizon
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techniques (Farina, Ferrari-Trecate, & Scattolini, 2010) have also
been successfully applied to the distributed estimation problem.

A different approach to state estimation, first introduced
by Schweppe (1968) for centralized problems, is the set-
membership (SM) paradigm. This method relies on bounded un-
certainties/disturbances and leads to estimators that provide, in
real time, sets containing the state of the system with guaran-
tees. To characterize these sets, different authors have resorted
to variants of ellipses (Durieu, Walter, & Polyak, 2001; El Ghaoui
& Calafiore, 2001; Savkin & Petersen, 1998), polyhedrons (Kunt-
sevich & Lychak, 1985), consistency techniques (Jaulin, 2002),
interval analysis (Mazenc & Bernard, 2011; Raïssi, Ramdani, &
Candau, 2004), or zonotopes (Alamo, Bravo, & Camacho, 2005;
Combastel, 2015).

The latter approach, derived from parallelotopic descriptions
(Chisci, Garulli, & Zappa, 1996), is very suitable for distributed
implementations. The fact that the zonotopes can be represented
in terms of vectors and matrices eases the transmission of infor-
mation and reduces the mathematical calculations, simple enough
to be carried out in distributed embedded systems with limited
computation capabilities.

Despite these advantages, the literature concerned with
zonotope-based distributed estimation is very scarce, being lim-
ited to some preliminary results of the authors of this paper (Gar-
cia, Millan, Orihuela, Ortega, & Rubio, 2015), and also the recent
work in Riverso, Rubini, and Ferrari-Trecate (2015). The latter
paper is based on the concept of practical robust positive invari-
ance, which allows the authors to guarantee convergence just in
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the absence of disturbances and measurement noises. In addition,
the design of the observer gains is centralized, which hinders the
implementation in distributed systems.

This paper develops a new distributed estimation observer for
interconnected systems composed of a number of interacting sub-
systems, each of them obeying to different dynamics. The paper
contains several contributions. Firstly, the coupled subsystems can
be sampled or actuated at different rates, increasing the applicabil-
ity of the proposed method to interconnected systems of distinct
nature. Unlike (Riverso et al., 2015), the observer gains can be
computed in a completely distributed fashion and it requires only
to perform some simple matrix calculations. Besides providing
guaranteed sets for the estimates, the proposedmethodminimizes
the volume of the zonotopes, this meaning a reduction in estima-
tion uncertainties. Finally, inspired by thework (Combastel, 2015),
it is shown that the proposed observer yields equivalent results
than the distributed Kalman filter developed in Roshany-Yamchi,
Cychowski, Negenborn, De Schutter, Delaney, and Connell (2013)
for the same kind of interconnected systems.

The paper is organized as follows. Section 2 introduces some
notation and preliminaries. Section 3 formally presents the prob-
lem. The proposed distributed observer is presented in Section 4.
The comparisonwith the analogous DKF ismade in Section 5. Some
examples illustrate the performance of the algorithm in Section 6.
Finally, conclusions are drawn in Section 7.

2. Notation and preliminaries

Let R ∈ Rn×p be a matrix of n rows and p columns. Then,
∥R∥F =

√
tr(RTR) is the Frobenius norm of R. Given matrices A, B

of appropriate dimensions, operator cat{A, B} implies the concate-
nation of the matrices, that is, cat{A, B} = [A B].

A zonotope, represented with calligraphic letter X , is defined
by its center c ∈ Rn and a matrix E ∈ Rn×p:

X = ⟨c, E⟩ =

{
c +

p∑
i=1

ςiei : |ςi| ≤ 1

}
,

being ei ∈ Rn the generator vectors (the columns of E). The order
of a zonotope is given by the number of generator vectors, its
F-radius is the Frobenius norm of E, and its covariation is defined
as PX = EET .

Let X = ⟨cx, Ex⟩ and Y = ⟨cy, Ey⟩ be two zonotopes and R
a matrix of appropriate dimensions. A linear transformation of a
zonotope is given by RX = ⟨Rcx, REx⟩, and the Minkowski sum of
two zonotopes is obtained as X ⊕ Y = ⟨cx + cy, cat{Ex, Ey}⟩. Given
matrix A and vectors x ∈ X , w ∈ W , then y ≜ Ax + w ∈ AX ⊕ W .

3. Problem formulation

This paper considers linear interconnected subsystems with
coupled dynamics. We assume that the input/output rates of each
subsystem can be different. This means, different components of
the input/output vectors might have different sampling rates. In
order to model this, we use the framework in Roshany-Yamchi
et al. (2013) and Scattolini and Schiavoni (1995) for multi-rate
systems:

xi(k + 1) = Aiixi(k) + Bi∆ui(k) +

∑
j∈Ni

Aijxj(k)

+Diwi(k) (1)

ϕi(k) = Υi(k)Cixi(k) + Υi(k)vi(k) (2)

where xi ∈ Rni is the state of subsystem i (i = 1, 2 . . . , b) with
output ϕi ∈ Rmi , ∆ui = Ψi(k)ϑi(k) ∈ Rnui is a local control signal,
and wi ∈ Rnwi , vi ∈ Rnvi are disturbances or unmodeled dynamics

and noises, respectively. The set Ni is comprised of those subsys-
tems j that dynamically affect subsystem i. As detailed in Roshany-
Yamchi et al. (2013) and Scattolini and Schiavoni (1995), the
diagonal periodic matrices Υi(k), Ψi(k) manage the input/output
transmission instants, respectively.

Throughout the paper,we consider that disturbances andnoises
affecting the dynamics always belong to known bounded sets, that
is, wi(k) ∈ Wi and vi(k) ∈ Vi, for i = 1, 2 . . . , b. These sets are
modeled as follows:

Wi = ⟨0,Qi⟩, Vi = ⟨0, Ri⟩. (3)

This paper deals with the design of a set-membership distributed
observer for the plant described in (1)–(2) affected by disturbances
and noises characterized by (3), operating under any known con-
trol strategy ϑi(k), whose design is out of the scope of the paper.

Let us consider also a set of b agents, each one associated to
a different subsystem and implementing a local estimator (fil-
ter/predictor):

X̂i(k|k) = fi(X̂i(k|k − 1), ϕi(k),Vi), (4)

X̂i(k + 1|k) = gi(X̂i(k|k), X̂j(k|k)(j ∈ Ni), ϑi(k),Wi). (5)

The set-membership distributed observation problem consists in
finding functions fi(·), gi(·) such that:

(1) xi(k) ∈ X̂i(k|k), ∀k, i;
(2) xi(k + 1) ∈ X̂i(k + 1|k), ∀k, i;
(3) The F-radius of X̂i(k|k) is minimized, ∀k, i.

4. Distributed set-membership observer

Consider that at time instant k each agent has an initial pre-
diction X̂i(k|k − 1) = ⟨ci(k|k − 1), Ei(k|k − 1)⟩, and measures its
local output ϕi(k). In the filtering step each agent computes the set
X̂i(k|k) = ⟨ci(k|k), Ei(k|k)⟩ as follows:

ci(k|k) = ci(k|k − 1)
+ Li(k)(ϕi(k) − Υi(k)Cici(k|k − 1)), (6)

Ei(k|k) = [Mi(k)Ei(k|k − 1) − Li(k)Υi(k)Ri] , (7)

where Li(k) is the observer gain to be designed and Mi(k) ≜ I −

Li(k)Υi(k)Ci.
Now, every agent communicates to its neighbors j : i ∈ Nj

its filtered set X̂i(k|k), and receives X̂j(k|k) from all j ∈ Ni. With
this information, each agent computes its prediction zonotopes as
follows:

ci(k + 1|k) = Aiici(k|k) +

∑
j∈Ni

Aijcj(k|k)

+ BiΨi(k)ϑi(k), (8)

Ei(k + 1|k) =

[
AiiEi(k|k) cat

j∈Ni
{AijEj(k|k)} DiQi

]
. (9)

Observe that the center of the zonotope has the same dynamical
equation, both in the filtering and prediction steps, as the dis-
tributed Kalman filter proposed in Roshany-Yamchi et al. (2013).

Note that the order of the zonotopes grows with both opera-
tions (7)–(9), increasing the computational requirements. It is a
common practice in zonotope-based set-membership observers to
iteratively reduce the order of the zonotopes such that it remains
upper-bounded. This operation is defined in Combastel (2015).
When reduction operations take place, prediction sets in (9) have
to be computed using the reduced-order zonotopes.
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