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a b s t r a c t

The frequency-domain data of a multivariable system in different operating points is used to design a
robust controller with respect to the measurement noise and multimodel uncertainty. The controller
is fully parameterized in terms of matrix polynomial functions and can be formulated as a centralized,
decentralized or distributed controller. All standard performance specifications like H2, H∞ and loop
shaping are considered in a unified framework for continuous- and discrete-time systems. The control
problem is formulated as a convex–concave optimizationproblemand then convexified by linearization of
the concave part around an initial controller. The performance criterion convergesmonotonically to a local
optimum or a saddle point in an iterative algorithm. The effectiveness of the method is compared with
fixed-structure controller design methods based on non-smooth optimization via multiple simulation
examples.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Recent developments in the fields of numerical optimization,
computer and sensor technology have led to a significant reduction
of the computational time of optimization algorithms and have
increased the availability of large amounts of measured data dur-
ing a system’s operation. These progresses make computationally
demanding data-driven control design approaches an interesting
alternative to the classical model-based control problems. In these
approaches, the controller parameters are directly computed by
minimizing a control criterion which is a function of measured
data. Therefore, a parametricmodel of the plant is not required and
there are no unmodeled dynamics. The only source of uncertainty
is the measurement noise, whose influence can be reduced signif-
icantly if the amount of measurement data is large.

Frequency-domain data is used in the classical loop-shaping
methods for computing simple lead–lag or PID controllers for
SISO stable plants. The Quantitative Feedback Theory (QFT) uses
also the frequency response of the plant model to compute ro-
bust controllers (Horowitz, 1993). In these approaches the con-
troller parameters are tuned manually using graphical methods.
New optimization-based algorithms have also been proposed re-
cently (Mercader, Åström, Baños, & Hägglund, 2016). The set of
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all stabilizing PID controllers with H∞ performance is obtained
using only the frequency-domain data in Keel and Bhattacharyya
(2008). This method is extended to design of fixed-order linearly
parameterized controllers in Parastvand and Khosrowjerdi (2015,
2016). The frequency response data are used in Hoogendijk, Den
Hamer, Angelis, van de Molengraft, and Steinbuch (2010) to com-
pute the frequency response of a controller that achieves a desired
closed-loop pole location. A data-driven synthesismethodology for
fixed structure controller design problems with H∞ performance
is presented in Den Hamer, Weiland, and Steinbuch (2009). This
method uses the Q parameterization in the frequency domain and
solves a non-convex optimization problem to find a local optimum.
Another frequency-domain approach is presented in Khadraoui,
Nounou, Nounou, Datta, and Bhattacharyya (2013) to design re-
duced order controllers with guaranteed bounded error on the
difference between the desired and achieved magnitude of sensi-
tivity functions. This approach also uses a non-convexoptimization
method.

Another direction for robust controller design based on
frequency-domain data is the use of convex optimization meth-
ods. A linear programming approach is used to compute linearly
parameterized (LP) controllers for SISO systemswith specifications
in gain and phase margin as well as the desired closed-loop band-
width in Karimi, Kunze, and Longchamp (2007); Saeki (2014). A
convex optimization approach is used to design LP controllerswith
loop shaping and H∞ performance in Karimi and Galdos (2010).
This method is extended to MIMO systems for computing de-
coupling LP-MIMO controllers in Galdos, Karimi, and Longchamp
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(2010). Recently, the necessary and sufficient conditions for the
existence of data-drivenH∞ controllers for SISO systemshave been
proposed in Karimi, Nicoletti, and Zhu (2016).

The use of the frequency response for computing SISO-PID
controllers by convex optimization is proposed in Hast, Aström,
Bernhardsson, and Boyd (2013). This method uses the same type
of linearization of the constraints as in Karimi and Galdos (2010)
but interprets it as a convex–concave approximation technique.
An extension of Hast et al. (2013) for the design of MIMO-
PID controllers by linearization of quadratic matrix inequalities
is proposed in Boyd, Hast, and Åström (2016) for stable plants.
A similar approach, with the same type of linearization, is used
in Saeki, Ogawa, and Wada (2010) for designing LP-MIMO con-
trollers (which includes PID controllers as a special case). This
approach is not limited to stable plants and includes the conditions
for the stability of the closed-loop system.

In this paper, a new data-driven controller design approach
is proposed based on the frequency response of multivariable
systems and convex optimization. Contrarily to the existing results
in Boyd et al. (2016); Galdos et al. (2010); Saeki et al. (2010), the
controller is fully parameterized and the design is not restricted
to LP or PID controllers. The other contribution is that the control
specification is not limited to H∞ performance. The H2, H∞ and
mixed H2/H∞ control problem as well as loop shaping in two- and
infinity-norm are presented in a unified framework for systems
with multimodel uncertainty. A new closed-loop stability proof
based on the Nyquist stability criterion is also given.

It should be mentioned that the problem is convexified using
the same type of approximation as the one used in Boyd et al.
(2016); Saeki et al. (2010). Therefore, like other fixed-structure
controller design methods (model-based or data-driven), the re-
sults are local and depend on the initialization of the algorithm.

2. Preliminaries

The system to be controlled is a Linear Time-Invariant Multi-
Input Multi-Output (LTI-MIMO) system represented by a multi-
variable frequency response model G(ejω) ∈ Cn×m, where n is the
number of outputs andm the number of inputs. The frequency re-
sponse model can be identified using the Fourier analysis method
fromm sets of input/output sampled data as Pintelon & Schoukens
(2001):

G(ejω) =

[
N−1∑
k=0

y(k)e−jωTsk

][
N−1∑
k=0

u(k)e−jωTsk

]−1

(1)

where N is the number of data points for each experiment, u(k) ∈

Rm×m includes the inputs at instant k, y(k) ∈ Rn×m the outputs at
instant k and Ts is the sampling period. Note that at leastmdifferent
experiments are needed to extract G from the data (each column
of u(k) and y(k) represents respectively the input and the output
data from one experiment). We assume that G(ejω) is bounded in
all frequencies except for a set Bg including a finite number of
frequencies that correspond to the poles of G on the unit circle.
Since the frequency function G(ejω) is periodic, we consider:

ω ∈ Ωg =

{
ω

⏐⏐⏐⏐−π

Ts
≤ ω ≤

π

Ts

}
\ Bg (2)

A fixed-structure matrix transfer function controller is consid-
ered. The controller is defined as K = XY−1, where X and Y are
polynomial matrices in s for continuous-time or in z for discrete-
time controller design. This controller structure, therefore, can be
used for both continuous-time or discrete-time controllers. The
matrix X has the following structure:

X =

⎡⎢⎣X11 . . . X1n
...

. . .
...

Xm1 . . . Xmn

⎤⎥⎦ ◦ Fx (3)

where X and Fx are m × n polynomial matrices and ◦ denotes
the element by element multiplication of matrices. The matrix
Fx represents the fixed known terms in the controller that are
designed to have specific performance, e.g. based on the internal
model principle. For discrete-time controllers, we have:

X(z) = Xpzp + · · · + X1z + X0 (4)

where Xi ∈ Rm×n for i = 0, . . . , p contain the controller parame-
ters. In the same way the matrix polynomial Y can be defined as:

Y =

⎡⎢⎣Y11 . . . Y1n
...

. . .
...

Yn1 . . . Ynn

⎤⎥⎦ ◦ Fy (5)

where Y and Fy are n × n polynomial matrices. The matrix Fy
represents the fixed terms of the controller, e.g. integrators or the
denominator of other disturbance models. The set of frequencies
of all roots of the determinant of Fy on the stability boundary
(imaginary axis for continuous-time controllers or the unit circle
for the discrete-time case) is denoted by By.

The matrix Y for discrete-time case can be written as:

Y (z) = Izp + · · · + Y1z + Y0 (6)

where Yi ∈ Rn×n for i = 0, . . . , p − 1 contain the controller
parameters. In order to obtain low-order controllers, a diagonal
structure can be considered for Y that makes its inversion and
implementation easier too. Note that Y (ejω) should be invertible
for all ω ∈ Ω = Ωg \ By.

The control structure defined in this section is very general and
covers centralized, decentralized and distributed control struc-
tures. The well-known PID control structure for MIMO systems is
also a special case of this structure.

3. Control performance

It is shown in this section that classical control performance
constraints can be transformed to constraints on the spectral norm
of the system and in general can be reformulated as:

F∗F − P∗P < γ I (7)

where F ∈ Cn×n and P ∈ Cn×n are linear in the optimization
variables and (·)∗ denotes the complex conjugate transpose. This
type of constraint is called convex–concave constraint and can be
convexified using the Taylor expansion of P∗P around Pc ∈ Cn×n

which is an arbitrary known matrix (Dinh, Gumussoy, Michiels, &
Diehl, 2012):

P∗P ≈ P∗

c Pc + (P − Pc)∗Pc + P∗

c (P − Pc). (8)

It is easy to show that the left hand side term is always greater than
or equal to the right hand side term, i.e. :

P∗P ≥ P∗Pc + P∗

c P − P∗

c Pc . (9)

This can be obtained easily by development of the inequality
(P − Pc)∗(P − Pc) ≥ 0.

3.1. H∞ performance

Constraints on the infinity-norm of any weighted sensitivity
function can be considered. For example, consider the mixed sen-
sitivity problem:

min
K

 W1S
W2KS


∞

(10)
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