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a b s t r a c t

This paper is concernedwith a linear fractional representation approach to the synthesis of linear coherent
quantum controllers for a given linear quantum plant. The plant and controller represent open quantum
harmonic oscillators and are modelled by linear quantum stochastic differential equations. The feedback
interconnections between the plant and the controller are assumed to be established through quantum
bosonic fields. In this framework, conditions for the stabilization of a given linear quantumplant via linear
coherent quantum feedback are addressed using a stable factorization approach. The class of all stabilizing
quantum controllers is parameterized in the frequency domain. Coherent quantumweightedH2 andH∞

control problems for linear quantum systems are formulated in the frequency domain. Finally, a projected
gradient descent scheme is outlined for the coherent quantum weighted H2 control problem.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The main motivation for coherent quantum feedback control is
based on avoiding the loss of quantum information in conversion
to classical signals which occurs during measurement (Landau &
Lifshitz, 1975; Lloyd, 2000). This approach builds on the technique
of constructing a feedback network from the interconnection of
quantum systems, for example, through field coupling; see Gough
(2010) and Gough and James (2007). In this framework, coherent
quantum control theory aims at developing systematic methods to
designmeasurement-free interconnections ofMarkovian quantum
systems modelled by quantum stochastic differential equations
(QSDEs); for example, see James, Nurdin, and Petersen (2008),
Nurdin, James, and Petersen (2009) and Petersen (2010). Owing to
recent advances in quantum optics, the implementation of quan-
tum feedback networks governed by linearQSDEs (Mabuchi, 2008;
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Parthasarathy, 1992; Petersen, 2010) is possible using quantum-
optical components, such as optical cavities, beam splitters and
phase shifters, provided the former represent open quantum har-
monic oscillators (OQHOs)with a quadratic Hamiltonian and linear
system-field coupling operators with respect to the state variables
satisfying canonical commutation relations (Edwards & Belavkin,
2005;Gardiner & Zoller, 2004). This important class of linearQSDEs
models the Heisenberg evolution of pairs of conjugate operators
in a multi-mode quantum harmonic oscillator that is coupled to
external bosonic fields. As a consequence, the notion of physi-
cal realizability (PR) addresses conditions under which a linear
QSDE represents an OQHO. This condition is organized as a set of
constraints on the coefficients of the QSDE (James et al., 2008)
or, alternatively, on the quantum system transfer matrix (Shaiju
& Petersen, 2012; Sichani & Petersen, in press) in the frequency
domain. These constraints complicate the solution of the coherent
quantum synthesis problems which are otherwise reducible to
tractable unconstrained counterparts in classical control theory.

Coherent quantum feedback control problems, such as internal
stabilization and optimal control design, are of particular interest
in linear quantum control theory (James et al., 2008; Petersen,
2010). These problems are amenable to transfer matrix design
methods (Gough, 2010; Petersen, 2010; Shaiju & Petersen, 2012;
Yanagisawa & Kimura, 2003a, b). Among the transfer matrix ap-
proaches to the control problems for linear multivariable systems,
the linear fractional representation approach to analysis and syn-
thesis has been largely developed in the literature; see Vidyasagar
(2011) and the references therein. The linear fractional repre-
sentation approach is a cornerstone in the study of stabilization
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problems. The central idea of this approach is to represent the
transfer matrix of a plant as fractions of stable rational matrices to
generate stable factorizations. By combining the idea of the stable
factorizations of a plant with the concept of coprimeness, neces-
sary and sufficient conditions for internal stabilizability are derived
in terms of Bézout equations (Vidyasagar, 2011). By solving these
Bézout equalities, a parameterization of all stabilizing controllers,
known as the Youla–Kučera parameterization, is obtained. This
idea gives rise to a method which leads to the solution of several
important control problems; see for example Vidyasagar (2011).

The Youla–Kučera parameterization was developed originally
in the frequency domain for finite-dimensional linear time-
invariant systems using transfer functionmethods, see Youla, Bon-
giorno, and Jabr (1976) and Youla, Jabr, and Bongiorno (1976), and
generalized to infinite-dimensional systems afterwards (Desoer,
Liu, Murray, & Saeks, 1980; Quadrat, 2003; Vidyasagar, 2011). The
state space representation of all stabilizing controllers has also
been addressed for finite-dimensional, linear time-invariant (Nett,
Jacobson, & Balas, 1984) and time-varying (Dale & Smith, 1993)
systems, and the approach was shown to be applicable to a class
of nonlinear systems (Anderson, 1998; Hammer, 1985; Paice &
Moore, 1990). In the Youla–Kučera parameterization, the feedback
loop involving the controller is redefined in terms of another
parameter known as the Youla or Q parameter. The closed-loop
map is then an affine function of Q , and so the optimal Q in stan-
dard optimal stabilization problems can be easily found.Moreover,
some constraints, such as internal stability, are reduced to convex
constraints on Q . Therefore, this approach provides a tool that
allows us to better understand the dichotomy between tractable
and intractable control synthesis problems in the presence of ad-
ditional constraints on the controller; see for example Boyd and
Barratt (1991).

In the present paper, we employ a stable factorization approach
in order to develop a counterpart of the classical Youla–Kučera
parameterization for describing the set of linear coherent quan-
tum controllers that stabilize a linear quantum stochastic system
(LQSS). In particular, we address the problem of coherent quantum
stabilizability of a given linear quantum plant. The class of all sta-
bilizing controllers is parameterized in the frequency domain. This
approach allows weighted H2 and H∞ coherent quantum control
problems to be formulated for linear quantum systems in the
frequency domain. In this way, the weighted H2 and H∞ control
problems are reduced to constrained optimization problems with
respect to the Youla–Kučera parameter with convex cost func-
tionals. Moreover, these problems are organized as a constrained
version of the model matching problem (Francis, 1987). Finally,
a projected gradient descent scheme is proposed to provide a
conceptual solution to the weighted H2 coherent quantum control
problem in the frequency domain.

The rest of this paper is organized as follows. Section 2 out-
lines the notation used in the paper. Linear quantum stochastic
systems are described in Section 3. The coherent quantum feed-
back interconnection under consideration is described in Section 4.
Section 5 revisits the PR conditions for linear quantum systems in
the frequency domain. Sections 6 and 7 formulate a quantum ver-
sion of the Youla–Kučera parameterization and provide relevant
preparatory material. Also, a class of unstabilizable LQSS systems
is presented. Coherent quantum weighted H2 and H∞ control
problems are introduced in Section 8. A projected gradient descent
scheme for the quantum weighted H2 control problem is outlined
in Section 9. Section 10 gives concluding remarks.

A preliminary version of this work, Sichani, Petersen, and
Vladimirov (2015), has been published in the conference proceed-
ings of the 10th Asian control conference. In comparison to the
conference version, use is made of a modified version of the phys-
ical realizability condition for linear quantum stochastic systems

in the frequency domain (Sichani & Petersen, in press) which leads
to more complete and simple results. The changes include a real-
valued parameterization of the linear coherent quantum stochastic
feedback systems (without loss of generality) and the omission of
technical assumptions in the main results of the paper. The main
theorem, Theorem 8, in Sichani et al. (2015) has been modified
to provide a parameterization of the set of all stabilizing linear
coherent quantum controllers. A class of linear quantum systems
is presented which cannot be stabilized by linear coherent quan-
tum controllers. For complete proofs, complementary results and
technical details see Sichani and Petersen (2017).

2. Notation

Unless specified otherwise, vectors are organized as columns,
and the transpose (·)T acts on matrices with operator-valued en-
tries as if the latter were scalars. For a vector X of self-adjoint
operators X1, . . . , Xr and a vector Y of operators Y1, . . . , Ys, the
commutatormatrix is defined as an (r×s)-matrix [X, Y T

] := XY T
−

(YXT)T whose (j, k) th entry is the commutator [Xj, Yk] := XjYk −

YkXj of the operators Xj and Yk. Furthermore, (·)† := ((·)#)T denotes
the transpose of the entry-wise operator adjoint (·)#. When it is
applied to complexmatrices, (·)† reduces to the complex conjugate
transpose (·)∗ := ((·))T. The positive semi-definiteness of matrices
is denoted by≽, and ⊗ is the tensor product of spaces or operators
(for example, the Kronecker product of matrices). Furthermore, Sr ,
Ar and Hr := Sr + iAr denote the subspaces of real symmetric,
real antisymmetric and complex Hermitian matrices of order r ,
respectively, with i :=

√
−1 the imaginary unit. Also, Ir denotes

the identity matrix of order r , the identity operator on a space H

is denoted by IH , and thematrices J :=

[
0 1

−1 0

]
and Jr := I r

2
⊗J.

The sets O(r) :=
{
Σ ∈ Rr×r

: ΣTΣ = I
}
and Sp(r,R) :=

{
Σ ∈

Rr×r
: ΣTJrΣ = Jr

}
refer to the group of orthogonal matrices

and the group of symplectic real matrices of order r . The notation[ A B
C D

]
refers to a state-space realization of the corresponding

transfer matrix Γ (s) := C(sI − A)−1B + D with a complex variable
s ∈ C. The conjugate system transfer function (Γ (−s))∗ is written
as Γ ∼(s). The Hardy space of (rational) transfer functions of type
p = 2, ∞ is denoted by Hp (respectively, RH p). The symbol ⊗ is
used for the tensor product of spaces.

3. Linear quantum stochastic systems

We consider a Markovian quantum stochastic system inter-
acting with an external boson field. The system has n dynamic
variables X1(t), . . . , Xn(t), where t ⩾ 0 denotes time. We generally
suppress the time argument of operators, unless we are explicitly
concerned with their time dependence, with the understanding
that all operators are evaluated at the same time. The system
variables are self-adjoint operators on an underlying complex sep-
arable Hilbert space H which satisfy the Heisenberg canonical
commutation relations (CCRs)

[X, XT
] = 2iΘ ⊗ IH , X :=

⎡⎢⎣X1
...

Xn

⎤⎥⎦ , (1)

on a dense domain in H , where θ ∈ An is nonsingular. In what
follows, the matrix Θ ⊗ IH will be identified with Θ . The system
variables evolve in time according to a Hudson–Parthasarathy
QSDE (Parthasarathy, 1992)with identity scatteringmatrix (which
eliminates from consideration the gauge, also known as conser-
vation, processes associated with photon exchange between the
fields):

dX = f dt + gdW . (2)
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