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a b s t r a c t

We explore the issue of characterizing reachability for a subset of the component systems in the series
connection of multivariable linear discrete-time systems. Using tools from algebraic systems theory,
partial state reachability of a series connection is characterized in terms of Toeplitz operators and coprime
factorizations of the component transfer functions. Our results extend earlier results by Callier andNahum
(1975) on reachability of the series connection of two systems, as well as a more recent characterization
in Fuhrmann and Helmke (2013) of the full reachability on the series connection of r ≥ 2 linear
systems.

© 2017 Published by Elsevier Ltd.

1. Introduction

In controlling systems in a network, typically one may only be
interested in controlling specific subsystems. Such situations occur
when the subsystems of interest are linked together and the links
between the nodes of interest exhibit their own dynamics, mod-
eling communication, transport or computation delays (e.g., for
coding/decoding) (Ji, Wang, Lin, & Wang, 2010), for instance in
multi-agent robotic systems (Ji & Egerstedt, 2006), and control
of passively interconnected chains (Yamamoto & Smith, 2016).
Reachability of these link dynamical states is not of primary inter-
est. More generally, controlling precisely all the states of a large
network is rarely a goal in itself, as is the case in the Supervisory
Control and Data Acquisition (SCADA) system (Liu, Xiao, Li, Liang,
& Chen, 2012). While a notion of partial reachability seems like
a more relaxed condition of reachability, its precise formulation
poses fascinating challenges. In this paper we restrict the discus-
sion to the series connection of several systems.

A more abstract formulation of this problem is the control of an
arbitrary subset of component systems in the series connection of
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a series of systems, Σ1 to Σr . Assume that the ith component has
a state space realization

Σi :
xi(t + 1) = Aixi + Biui(t)

wi(t) = Cixi(t).
(1)

with minimal realization (Ai, Bi, Ci) ∈ Fni×ni × Fni×mi × Fpi×ni , i =

1, 2, . . . , r ,m := m1. Set n =
∑r

i=1ni. The coupling structure of the
series connection requires the identifications of the subsystems’
external signals u(t) = u1(t), wi(t) = ui+1(t), i = 1, . . . , r,
thus leading to the overall system equations

x(t + 1) = Ax(t) + Bu(t)
y(t) = Cx(t) (2)

with system matrices

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

A1

B2C1 A2

B3C2 A3

. . .
. . .

BrCr−1 Ar

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎣
B1
0
...
...

0

⎤⎥⎥⎥⎥⎥⎦
C = [0, · · · · · · 0, Cr ].

(3)

The contribution of this paper is a precise characterization of
the reachability of a subset of systems in a series connection. Let
I = {i1, i2, . . . , ik} be a subset of the index set {1, . . . , r}, ordered
as 1 ≤ i1 < · · · < ik ≤ r . We refer to the reachability of the states
of the subsystems indexed by I as partial state reachability of the
series connection Σ1 → · · · → Σr .
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Definition 1. The Σ1 → · · · → Σr series connection is I-partial
state reachable if for arbitrary xi1 ∈ Fni1 , . . . , xik ∈ Fnik , there exists
an integer T ≥ 0 and an input sequence u(0), u(1), . . . , u(T −1) so
that for all ij ∈ I, the final state (at step T ) of the subsystem Σij
is xij , given that the entire series connection is initially in the zero
state.

By theminimality assumption, each of the systemsΣi with i ∈ I
is reachable, which is clearly a necessary condition for I-partial
state reachability. Full reachability of the series connection of two
systems was first characterized by Callier and Nahum (1975), and
has been subsequently extended by Fuhrmann and Helmke (2013,
2015) for an arbitrary number of systems in a series connection.
Partial state reachability is a special case of output reachability,
where the read-outmatrix C projects the full state state space onto
the state space of Σi1 , Σi2 , . . . , Σik . The classical characterization
of output reachabilitymay be found in Sontag (1998). However, its
implementation as a rank test does not take the coupling structure
of series connections into account and therefore does not help in
solving the problem considered here. The problem of characteriz-
ing (1, 3)-partial state reachability in a series connection of three
systems was first addressed in Verriest, Helmke, and Fuhrmann
(2016), and it was shown not to be trivial.
A state space characterization for partial reachability is readily
obtained. For a realization (Ai, Bi, Ci), define the associated ∞ ×

∞ − Toeplitz matrix as

Ti = T(Ai, Bi, Ci) =

⎡⎢⎢⎢⎢⎢⎣
0 H (i)

1 H (i)
2 · · ·

0 0 H (i)
1

. . .

...
. . .

. . .

· · · · · · · · ·
. . .

⎤⎥⎥⎥⎥⎥⎦ ,

whereH (i)
j := CiA

j−1
i Bi denotes the jthMarkovparameter of subsys-

tem Σi. Let R(Ai, Bi) denote the infinite length ni ×∞–reachability
matrix. The series connection Σ1 → Σ2 → Σ3 → · · · → ΣN is
I-partial state reachable if and only if the operator

RI =

⎡⎢⎢⎣
R(Ai1 , Bi1 )Ti1−1 · · ·T1
R(Ai2 , Bi2 )Ti2−1 · · ·T1

...

R(Aik , Bik )Tik−1 · · ·T1

⎤⎥⎥⎦ (4)

has full row rank (if i1 = 1, then the first row has to be replaced
by R(A1, B1)). The above result follows by a straightforward com-
putation, using the fact that the Toeplitz matrix of the (proper)
series connection Σ1 → Σ2 is the product of the individual
Toeplitz matrices T(Ai, Bi, Ci) (in correct order). However this re-
sult is somewhat premature as it is not particularly useful. The
rank condition is hard to check as RI essentially is an operator,
with the number of columns not a priori determined. Ourmain result,
Theorem 3 below, yields an efficient formulation using polynomial
matrix representations and tools from algebraic system theory. For
space reasons this cannot be reviewed here, and we direct the
reader to Rosenbrock (1970) and Fuhrmann and Helmke (2015)
for the necessary background on the Rosenbrock representation,
its shift realization, the polynomial model, the reachability map,
and Fuhrmann system equivalence.

The paper is organized as follows. Section 2 gives a precise
characterization of the notion of partial state reachability. In
Section 3, we present our main results on partial state reachabil-
ity: the Toeplitz operator characterization and equivalent charac-
terizations in polynomial matrix fashion. Examples illustrate the
concepts and a complete solution to the (2)- and (1, 3)- partial
reachability problem is sketched.

2. Polynomial description of series connections

Let F((z−1))m denote the vector space of truncated Laurent
series, i.e., f (z) =

∑nf
j=−∞

fjz j, fj ∈ Fm. Thus f−1 denotes the residue
of f (z). We denote the canonical projections onto the strictly
proper and polynomial parts, respectively, by π− : F((z−1))m −→

z−1F[[z−1
]]

m and π+ : F((z−1))m −→ F[z]m. For a nonsingular
polynomial matrix T (z) ∈ F[z]m×m, define a linear projection map
πT : F[z]m −→ F[z]m by

πT f = Tπ−(T−1f ), f ∈ F[z]m.

The space XT := ImπT is called the polynomial model of T (z).
It is a finite dimensional vector space. Observe that in the case of
T (z) = (zI − A), the image of BF[z]m under the projection π(zI−A)
is precisely the (finite-dimensional) subspace of states associated
with the first-order model xk+1 = Axk + Buk that can be reached
from rest by the action of inputs with finite support. Let TG :

F[z]m → F[z]p denote the Toeplitz operator TGu := π+(Gu) with
symbol G(z).

Consider now r decoupled minimal discrete–time systems (1),
and let Gi(z) = Ci(zI − Ai)−1Bi denote their associated transfer
matrix. The series connection of these systems then has the state
space representation (A,B, C) as in (3), with transfer matrix

G(z) = Gr (z) · · ·G1(z) = C(zI − A)−1B.

In terms of right coprime factorizations Gi(z) = Ni(z)Di(z)−1, i =

1, . . . , r, one has a polynomial matrix fraction description of the
series connection as G(z) = V (z)T (z)−1U(z) + W (z), where

T (z)=

⎡⎢⎢⎣
D1(z) 0 · · · 0

−N1(z) D2(z)
. . .

. . .

0 · · · −Nr−1(z) Dr (z)

⎤⎥⎥⎦ , U(z)=

⎡⎢⎢⎣
I
0
...

0

⎤⎥⎥⎦ (5)

and

V (z) =
[
0 0 · · · 0 Nr (z)

]
, W (z) = 0.

It is easily seen by inspection, see Fuhrmann (1977) and Fuhrmann
andHelmke (2015) for the terminology and further details, that the
two polynomial system matrices[

zI − A −B
C 0

]
,

[
T (z) −U(z)
V (z) 0

]
are Fuhrmann strict system equivalent and thus their shift real-
izations are similar. This implies that the shift realization (A, B, C)
of (U, T , V ,W ) is state space equivalent to (A,B, C). Follow-
ing Fuhrmann and Helmke (2015), an isomorphism between the
respective state spaces is given as Z : XT −→ XzI−A, Zf =

πzI−A(Bf ), where B := diag(B1, . . ., Br ). A straightforward compu-
tation reveals that

Zf =

⎡⎢⎢⎢⎢⎣
πzI−A1 (B1f1)

πzI−A2 (B2(f2 + π+(G1f1)))
...

πzI−Ar (Br (fr + π+(Gr−1fr−1) + · · ·

+ · · · + π+(Gr−1 · · ·G1f1)))

⎤⎥⎥⎥⎥⎦ .

Moreover, f ∈ XT if and only if for all i = 1, . . . , r

fi + π+(Gi−1fi−1) + · · · + π+(Gi−1 · · ·G1f1) ∈ XDi .

Themap Z intertwines the shift realizations (T ,U, V ) and (A,B, C)
and therefore maps the reachability subspace T1XT2 of (A, B, C)
isomorphically onto that of (A,B, C). Here T1 = gcld(T ,U) and
T1T2 = T . In particular, the respective reachability maps satisfy
for all u ∈ F[z]m: Z (πT (Uu)) = πzI−A(Bu). Let nI = ni1 + · · · + nik
and let prI : Fn

→ FnI denote the canonical projection onto
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