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a b s t r a c t

In this paper, we propose a discrete-time biasedmin-consensus protocol with finite-time convergence by
perturbing an existing min-consensus protocol, and investigate its convergence under time-delay and a
synchronous state update. It is shown that a complex behavior that can address shortest path planning
on a graph emerges from this modified consensus protocol. Theoretical analysis shows that the proposed
protocol converges in finite time. In real-world networked systems, there may exist inevitable time
delay or asynchronism in state updates. The convergence of biased min-consensus under these non-ideal
situations is also theoretically analyzed. To show the scalability and efficiency of the proposed protocol, it
is applied to large-scalemaze solving on amazemap containing 640 × 640 pixels, which corresponds to a
graph with 42,185 nodes. In addition, we also present an application of the proposed protocol to address
the complete coverage problem, which further demonstrates the potential of biased min-consensus in
robotic applications.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Consensus includes min-consensus, max-consensus and aver-
age consensus (Cortés, 2008). Depending on the existence of a
leader, consensus is divided into leader–follower consensus and
leaderless consensus (Abaid& Porfiri, 2012; Olfati-Saber &Murray,
2004). Consensus protocols are divided into continuous-time con-
sensus protocols (Olfati-Saber & Murray, 2004) and discrete-time
consensus protocols (Cai & Ishii, 2012). Considering that, in prac-
tice, consensus protocols are generally implemented in a discrete-
time manner, we consider discrete-time consensus protocols.
Effort has been paid to the design of distributed discrete-time
protocols to address time-delay (Xiao & Wang, 2008), state ob-
servation (Xu, Chen, Huang, & Gao, 2013), transmission nonlinear-
ity (Chen, Lü, & Lin, 2013), and input saturation constraints (Yang,
Meng, Dimarogonas, & Johansson, 2014). In terms of applica-
tions, discrete-timemin-consensus protocols have been applied to
network utility maximization (He, Duan, Hou, Cheng, & Chen,
2015), frequency regulation in islanded AC microgrids (Cady,
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Domíguez-García, & Hadjicostis, 2015), and determining when
averaging consensus is reached (Yadav & Salapaka, 2007). Al-
though many results have been reported on the design of dis-
tributed discrete-time consensus protocols and their applications,
e.g., Cady et al. (2015), Cai and Ishii (2012), He et al. (2015) and
Yadav and Salapaka (2007), it remains unknownwhether discrete-
time consensus protocols can be used or extended to solving short-
est path problems (Fu, Sun, & Rilett, 2006).

In this paper, we propose a discrete-time biasedmin-consensus
protocol which is capable of generating shortest path planning.
A comparison of the resultant shortest path planning algorithm
with some existing algorithms is shown in Table 1. Note that,
compared with centralized algorithms, distributed ones are more
suitable for large-scale problems (Qin, Yu, & Hirche, 2012). We
also extend the proposed protocol to solving maze problems (Ni,
He, Wen, & Xu, 2013) and complete coverage problems (Yang
& Luo, 2004). Main contributions of this paper are summarized
as below: (1) A discrete-time biased min-consensus protocol is
proposed, which is capable of generating shortest path planning;
(2) The proposed protocol is asymptotically stable under time-
delay or asynchronous state update, by which the state values of
nodes converge in finite time; (3) To our knowledge, this is the
first time that maze solving and complete coverage are achieved
by modifying a discrete-time consensus protocol.

2. Preliminary

The graph theory (Godsil & Royal, 2001) is a useful tool for
investigations on consensus of network systems. Let G = (V,E)
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Table 1
Comparisons of algorithms for solving shortest path problems.

Type Convergence Destinations Path

This paper Distributed Yes Multiplec Shortest
Dijkstra algorithm (Dijkstra, 1959) Centralized Yes Oneb Shortest
Genetic algorithm (Ahn & Ramakrishna, 2002) Centralized Yes Oneb a

PSO (Mohemmed, Sahoo, & Geok, 2008) Centralized Yes Oneb a

ID algorithm (Jan, Sun, Tsai, & Lin, 2014) Centralized Yes Oneb Near-shortest
CPCNN (Sang, Lv, Qu, & Yi, 2016) Centralized Yes Oneb a

a The algorithm usually, but not always, produces a shortest path.
b At each run, the algorithm, if successful, only finds a (near-) shortest path from a given initial position to a destination.
c At each run, the algorithm finds a shortest one among the paths from a given initial position to multiple destinations.

denote an undirected connected graph with V = {1, 2, . . . , n}
denoting the set of nodes and E denoting the set of arcs on the
graph, respectively. The value of node i in the graph is denoted by
xi. The arc connecting node i and node j is denoted by (i; j) with
i = 1, 2, . . . , n and j = 1, 2, . . . , n, where n denotes the number
of nodes in the graph. The set of neighbors of node i is denoted by
N(i) = {j | (i; j) ∈ E}. The weight of arc (i; j) in an undirected graph
is denoted bywij. Specifically, if arc (i; j) exists, thenwij = wji > 0;
otherwise, wij = 0. In weighted undirected connected graph G, a
walk is an alternating sequence of adjacent edges. The sum of the
weights of the edges is called the length of the walk. A path is a
walk without repeated edges or nodes.

Consider a network of n nodes defined on graph G = (V,E).
Let t0 < t1 < t2 < · · · be the time instants when the state of
the network undergoes change. Let xki denote the value of node i at
time tk. Themin-consensus is such that the network asymptotically
achieves consensus with limk→+∞xki = mini∈V{x0i },∀i ∈ V, where
x0i denotes the initial state value of node i. Finite-time convergence
means that convergence is reached in finite updates, i.e., finite
time, which is better than asymptotic convergence (Wang & Xiao,
2010). In a general network system, there are two types of nodes,
i.e., leader nodes and follower nodes. Let S andV−S denote sets of
leader nodes and follower nodes, respectively. For leader-following
network systems, with static leaders, an intuitive distributed min-
consensus protocol is{
xk+1i = xki , i ∈ S,

xk+1i = min
j∈N(i)
{xkj }, i ∈ V− S. (1)

Definition 1 (Godsil and Royal (2001)). The shortest path problem
defined on graph G = (V,E) is to find a path from a node s ∈ V
to another node v ∈ V such that the sum of the weights of its
constituent edges is minimized.

The shortest path problem becomes more complicated when
there are multiple destinations nodes. In this case, one needs to
find a shortest path among the paths from a node to multiple
destination nodes.

3. Discrete-time biased min-consensus

3.1. Protocol

We consider such a case, where the information of neighbor
j ∈ N(i) that follower node i receives is xkj + wij, i.e., there is a
biased term wij. Under the synchronous update, adding the biased
term to themin-consensus protocol (1) yields the following biased
min-consensus protocol:{
xk+1i = xki , i ∈ S,

xk+1i = min
j∈N(i)
{xkj + wij} i ∈ V− S. (2)

Evidently, the leader nodes are static nodes, for which, xki = x0i ,
∀i ∈ S. This consensus protocol is synchronous in the sense that

all the nodes in the network update their state values at the same
time instant.

Remark 1. Biased min-consensus protocol (2) is distributed since
each follower node updates its state value based on information
from neighbor nodes and each leader node is static. Due to the
existence of biased term wij in biased min-consensus protocol (2),
the network cannot achieve min-consensus. With the proposed
leader–follower biased min-consensus protocol, the state values
of the follower nodes do not converge to a common value. We
call the protocol a leader–follower one since the state values
of the follower nodes at the steady-state depend on the leader
nodes, which is theoretically analyzed later. As the protocol (2)
is distributed, the computational complexity can be analyzed by
considering the floating point operations (FLOPs) (Boyd & Van-
denberghe, 2004; Fang & Chan, 2009) needed for each node at
each state update. A floating-point operation is defined as one
addition, subtraction, multiplication, or division of two floating-
point numbers (FLOPs) (Boyd & Vandenberghe, 2004; Fang & Chan,
2009). According to Fang and Chan (2009), calculating the square
root of a non-negative real number costs 6 FLOPs. Themax function
min(a, b) with a and b being real numbers can be calculated via
min(a, b) = (a + b +

√
(a− b)2)/2, which thus costs 11 FLOPs.

At each state update, the leader nodes are static, and thus cost no
FLOPs. LetNmax denote themaximal number of neighbors of a node
in the network. Then, in view of (2), at each update, each follower
node requires at most 11(Nmax − 1)+ Nmax = 12Nmax − 11 FLOPs.
Note that Nmax is generally limited. For example, for the maze
solving and coverage problems considered in this paper, Nmax = 8.
Thus, Nmax can generally be viewed as a sufficiently large constant.
Therefore, at each update, the computational complexity of each
follower node with biased min-consensus protocol (2) is O(1), and
that of each leader node is 0.

Synchronous bias-min consensus protocol (2) with bounded
time-delay is formulated as follows:⎧⎨⎩xk+1i = xki , i ∈ S,

xk+1i = min
j∈N(i)
{x

k−τij
j + wij}, i ∈ V− S,

(3)

where τij ∈ {1, 2, 3, . . .} is the variable to scale the time-delay
between node i and node j. In this paper, we set x0i = x−1i = x−2i =

· · · , ∀i ∈ V.
Synchronous communication requires a central synchronizing

clock, which may not be available in practical applications (Fang
& Antsaklis, 2005; Qin et al., 2012). Therefore, it is worth investi-
gating consensus under asynchronous communication, where the
state update of nodes is not synchronous. Let nonempty setU(k) ⊂
V denote the set of updating indexes of nodes on graphG at the kth
time instant. The terminology ‘‘time instant’’ here is independent
for all the nodes, which is used only for the convenience of analysis
and illustration. Based onmin-consensus consensus protocol (1), a
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