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a b s t r a c t

In this paper, we consider the control problem of linear systems with state time-delays when the control
signal is affected by a possibly time-varying delay. The problem is solved by a chain of predictors under the
assumption that a stabilizing control exists for the case of no input delay. This solution is then extended to
the case of partial informationwhen only delayed output is available. Both the input and the output delays
may have arbitrary bounds. With respect to previous approaches to the same problem appeared recently
in the literature the method proposed here has a simpler structure and in particular it does not need the
computation of distributed terms. As a by-product we show that it is possible to derive an observer for a
system with state and output delays from an observer for the same system without output delays.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The control problem of dynamic systems with delays has re-
ceived growing attention in recent years due to novel application
areas such as control over networks. The readermay refer to the ex-
cellent surveys in Gu andNiculescu (2003), Krstic (2010a), Richard
(2003) and to the recent books (Fridman, 2014; Karafyllis, Malisoff,
Mazenc, & Pepe, 2016). In this paper,we focus on linear systems, for
which stabilization in the presence of input delays is an important
problem in the applications. In order to overcome the limitation
of the original Smith predictor (Smith, 1959) to systems that
are open-loop stable, the standard approach is based on predictor
feedback by means of finite spectrum assignment (Manitius & Ol-
brot, 1979) and model reduction approaches (Artstein, 1982). The
prediction approach has received renewed interest in recent years,
for both linear and nonlinear systems with state and input delays
(Bekiaris-Liberis & Krstic, 2010; Jankovic, 2009, 2010; Kharitonov,
2014; Krstic, 2009). For linear systemswith input delay only, some
recent approaches aim at avoiding the computation of distributed
terms,which is computationally challenging andmaybe the source
of instabilities. This is the case of the truncated predictor feed-
back (Yoon & Lin, 2013; Zhou, 2014c; Zhou, Lin, & Duan, 2012) and
the closed-loop predictor approaches (Cacace, Germani, & Manes,
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2013; Zhou, 2014b). The truncated predictor feedback is also ap-
plicable to some classes of systems with state delays, whereas the
closed-loop approach can be applied to nonlinear systems that are
feedback linearizable (Cacace, Conte, Germani, & Pepe, 2016).

This work considers linear systemswith input, state and output
delays, a framework recently studied in Yoon and Lin (2015) by
means of recursive predictors involving distributed terms. Recent
approaches for state and input delays only include Zhou (2014a,
2015) and Zhou, Liu, and Mazenc (2017), where ingenious ap-
proaches based on nested predictors, integrators and observers
have been employed to overcome large input delays. The approach
developed in this paper is a variant of the closed-loop predictor
approach of Cacace et al. (2013), that in its general formulation can
be recast as a special case of observer-based predictor, an approach
that has been pursued in several recent papers (Krstic, 2010b;
Léchappé, Moulay, & Plestan, 2016; Mirkin & Raskin, 2003; Zhou
et al., 2017). The main advantage is that the resulting predictor
is a chain of DDEs without distributed terms that are easy to
implement. Moreover, the exponential rate of convergence to the
origin of the prediction error is easy to determine, the method
can be extended to the case of incomplete information with large
and time-varying output delays, and optimality of the control is
preserved when the state is accessible. As in Yoon and Lin (2015),
Zhou (2014a), Zhou (2015) and Zhou et al. (2017), we start from
the assumption that a controller is available for the case of no input
delays.

The remainder of the paper is organized as follows. In Section 2
we provide some background material and formalize the problem
wewant to solve. The case of state predictor feedback is considered
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in Section 3 and the case of delayed output predictor feedback
is considered in Section 4. Some properties of the proposed ap-
proaches are discussed in Section 5 and validated in Section 6
through a benchmark example.

Notation. C(A; B) denotes the set of continuous functions that map
A into Bwith the uniform convergence norm ∥·∥∞. For x : R → Rn

x[a,b] denotes the restriction of x to [a, b].µ(A) denotes the spectral
abscissa of A, i.e. all the eigenvalues of A have real parts ≤ µ(A). If
µ(A) < 0 then A is said to be Hurwitz.

2. Problem statement

We consider the class of linear time-invariant systems with
input, state and output discrete delays where input and output
delays may be time-varying,

ẋ(t) =

N∑
i=0

Aix(t − ri) + Bu(t − h(t)), t ≥ 0 (1)

y(t) = Cx(t − δ(t)). (2)

x(t) ∈ Rn, u(t) ∈ Rp, and y(t) ∈ Rq, are respectively the system
variables, input and output signals. r0 = 0 ≤ ri ≤ r̄ , h(t) ≤ h̄, and
δ(t) ≤ δ̄ are respectively the state, input and output delays, that are
supposed to be known together with their bounds. System (1) is
initialized by x[−r̄,0] ∈ C([−r̄, 0];Rn) and u(t−h(t)) = 0whenever
t − h(t) < 0. When the input delay is time-varying, we assume
as usual that the control signal generated by the controller is used
only once at a known future time (Bekiaris-Liberis & Krstic, 2012;
Yoon & Lin, 2013). Hence, t − h(t) is bijective, ∀t∃ !τ : t − h(t) = τ

and t is known at time τ . This assumption is trivially satisfiedwhen
h(t) = h and h is known. The output delay δ(t) is assumed to be
continuous.

The problem is to asymptotically stabilize (1)–(2) with an out-
put feedback control signal generated at time t by using only the
available output y(τ ), τ ≤ t . We solve this problem under the
assumption that a stabilizing state feedback control exists when
no input delay is present.

Assumption 1. There exists a linear bounded operator K :

C([−r̄, 0];Rn) → Rp such that u(t) = K(x[t−r̄,t]) asymptotically
stabilizes system (1) when h(t) = 0.

Example. For N = 1 the control u(t) = K0x(t) + K1x(t − r1) yields
the closed-loop system

ẋ(t) = (A + BK0)x(t) + (A1 + BK1)x(t − r1). (3)

There are many approaches in the literature to design K0 and K1
such that (3) is asymptotically stable (Fridman, 2014; Gu, Chen, &
Kharitonov, 2003; Yoon & Lin, 2015; Zhou, 2014a). Assumption 1
implies thatwhen h(t) ̸= 0 the stabilizing control can be computed
when a prediction of x[t+h̄−r̄,t+h̄] is available. As discussed in Yoon
and Lin (2015), Zhou (2014a) and Zhou (2015), the standard pre-
diction scheme of Manitius and Olbrot (1979)

x(t + h̄) = eA0 h̄x(t) +

∫ t+h̄

t
eA0(t+h̄−τ )Bu(τ − h(τ ))dτ

+

N∑
i=1

∫ t+h̄

t
eA0(t+h̄−τ )Aix(τ − ri)dτ (4)

is causal and implementable onlywhen h̄ ≤ ri, i = 1, . . . ,N . More-
over, (4) can be computed only when complete information on the
state variables is available. In Kharitonov (2014), an extension of
the prediction scheme of Manitius and Olbrot (1979) to the case of
state delays when h̄ > ri is presented. We briefly compare it with

our proposal in Remark 8. In Section 3, we present the solution
of the prediction problem for h̄ > ri when the state is available.
The solution for the case of incomplete and delayed information is
presented in Section 4.

3. Predictor-based feedback with complete information

We first consider systems of the form

ẋ(t) = A0x(t) + A1x(t − r) + Bu(t − h), t ≥ 0. (5)

The extension to multiple state delays and time-varying input de-
lay is straightforward and will be described later. The assumptions
are that x(t) is available, and a stabilizing input for h = 0 exists
(Assumption 1). Our aim is to predict x(t+h) to generate the control
when h > r .

Lemma 2. For a given A ∈ Rn×n, let L̄ be any matrix such that
Ā = A − L̄ is Hurwitz. Consider the delay differential equation

ξ̇ (t) = Aξ (t) − L̄eĀdξ (t − d), t > 0, (6)

initialized by any ξ[−d,0] ∈ C([−d, 0];Rn). If, for some α ∈

[0, −µ(Ā)],

Γ (L̄, α, d) =

∫ d

0
∥L̄eĀθ∥eαθdθ < 1, (7)

then ∥ξ (t)∥ ≤ cξ e−αt for some cξ > 0.

The proof of Lemma 2 is in Appendix.

Lemma 3. If Ā = A − L̄ is Hurwitz and Γ (L̄, 0, d) < 1, the solution
ξ (t) of (6) is asymptotically stable.

Remark 4. It is always possible to choose d that satisfies (7).
Γ (L̄, α, d) is nonnegative, monotone and continuous with respect
to d, and Γ (L̄, α, 0) = 0. If, for a given L̄, α and ∀ξ , Γ (L̄, α, ξ ) < 1,
any d ≥ 0 satisfies (7). Otherwise, any d < min{ξ : Γ (L̄, α, ξ ) >
1} satisfies (7). Consequently, Lemma 3 allows to determine an
interval [0, d] of delays for which the system is exponentially
stable with a given rate α. Conversely, the rate of exponential
stability given the delay d can be computed as α = sup{a ≤

−µ(Ā) : Γ (L̄, a, d) < 1}.

Theorem 5. Given system (5), L̄ such that Ā = A0 − L̄ is Hurwitz,
and α ∈ [0, −µ(Ā)], let w̄ = supw{w : Γ (L̄, α,w) < 1} and
d = min{r, w̄}. Then

˙̂x1(t) = A0x̂1(t) + A1x(t + d − r) + Bu(t + d − h)

+ L̄eĀd
(
x(t) − x̂1(t − d)

)
(8)

is an exponential estimate of x(t + d) with rate α, that is, ∥x(t +

d) − x̂1(t)∥ ≤ c1e−αt for some c1 > 0 and for any x̂1, [−d,0] ∈

C([−d, 0];Rn).

Proof. In the first place, notice that (8) can be implemented
because d ≤ r ≤ h implies that both x(t + d − r), u(t + d − h)
are available at time t . Γ (L̄, α, δ) monotonically increases with δ,
thus w̄ is well defined (it may be ∞ when the inequality is always
satisfied), and so it is d. The prediction error ϵ1(t) = x(t+d)− x̂1(t)
satisfies

ϵ̇1(t) = A0ϵ1(t) − Lϵ1(t − d), (9)

with L = L̄eĀd and ϵ1, [−d,0] = x[0,d]−x̂1, [−d,0], and it is exponentially
stable with rate α by Lemma 2.
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