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a b s t r a c t

In this paper, a new class of Boolean networks, called Stochastic Boolean Networks, is presented. These
systems combine some features of the classical deterministic Boolean networks (the state variables
admit two operation levels, either 0 or 1) and of Probabilistic Boolean Networks (at each time instant
the transition map is selected through a random process), enriching the set of admissible dynamical
behaviors, thanks to the set-valued nature of the transition map. Necessary and sufficient Lyapunov
conditions are given to guarantee global asymptotic stability (resp., global asymptotic stability in
probability) of a given set for a deterministic Boolean networkwith set–valued transitionmap (resp., for a
Stochastic Boolean Network). A constructive procedure to compute a Lyapunov function (resp., stochastic
Lyapunov function) relative to a given set for a deterministic Boolean network with set–valued transition
map (resp., Stochastic Boolean Network) is reported.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The study of the relation between the expression of a gene and
the synthesis of a particular biochemical product is one of themost
challenging problems in modern molecular biology (Perdew, Van-
den Heuvel, & Peters, 2014). In the literature, different frameworks
have been proposed to model and analyze this complex relation-
ship, such as: cluster analysis (Eisen, Spellman, Brown, & Botstein,
1998), Bayesian networks (Friedman, Linial, Nachman, & Pe’er,
2000; Yu, Smith, Wang, Hartemink, & Jarvis, 2004), information-
theoretic approaches (Margolin et al., 2006), and Ordinary Differ-
ential Equations (Bansal, Della Gatta, & Di Bernardo, 2006). Among
these analytical models, Boolean networks are receiving growing
interest (Grieb et al., 2015; Kaushik & Sahi, 2015).

A Boolean network is a discrete-time nonlinear system
described by variables with binary operation levels (Kauffman,
1969). At each time instant, the state of the system is updated by
using a logic function of the current variables. In fact, each gene
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can have two states: 1, when it is expressed, and 0, when it is not.
Similarly, each biochemical product can have two states, 0 or 1,
depending on its presence above or below a certain concentration
threshold, respectively. This kind of structure can capture the
behavior of complex regulatory networks (Albert & Barabási, 2000;
Harris, Sawhill, Wuensche, & Kauffman, 2002). In the literature,
many different approaches have been proposed to characterize
the dynamical behavior of this class of systems. For instance,
in Cheng and Qi (2010), a mathematical framework has been
proposed to convert a Boolean network into a classical discrete-
time, time-invariant system, and it is shown that, by analyzing the
transition matrix of such a system, one can identify some features
of the Boolean network such as: the number of fixed points, the
number of cycles of given length, the transient period for all
points to enter the set of attractors, and the basin of attraction
for each attractor. On the other hand, in Hinkelmann et al. (2011),
an algebraic geometry approach has been proposed to identify
attractors. Algebraic geometry techniques have been used also to
compute Darboux polynomials (Menini & Tornambe, 2013a) and
to design observers for Boolean networks (Menini & Tornambe,
2013b). Even if these systems have been first used to model
biological relationships, they are receiving most attention also
in other fields such as: financial markets (Caetano & Yoneyama,
2015), electronics (Rosin, 2015), and industrial networks (Easton,
Brooks, Georgieva, & Wilkinson, 2008).

One of the most important limitations of classical Boolean net-
works is their determinism (somehowmitigated in Thomas (1973)
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by the introduction of Boolean networks with asynchronous up-
dates). In Shmulevich, Dougherty, and Zhang (2002b), Probabilistic
Boolean Networks (briefly, PBN) have been introduced; they share
the appealing structure of Deterministic BooleanNetworks, but are
also able to copewith uncertainty both in the data and in themodel
selection. Namely, a PBN is a discrete-time system that shares the
structure of a classical Boolean network (i.e., the state variables ad-
mit two operation levels), but the transition from a state to another
one is governed by a randomprocess. In fact, a PBN involves a set of
possible Boolean maps for each state variable and, at each update
time, the process of choosing a certain map rather than another is
governed by a random process (for further details and the formal
definition of a PBN, see Section 2.2). The interest in these systems
arises from the advent of gene expression microarrays that yield
quantitative and semi-quantitative data on the cell status in a spe-
cific condition and time (Bansal, Belcastro, Ambesi-Impiombato, &
Di Bernardo, 2007). However, many times, the available data are
not sufficient to estimate all the parameters that are present in the
system (e.g., when the number of variables involved in the process
is higher than the number of available measures, or when some
essential variables are unmeasurable). In these cases, it may be
preferable to have a probabilistic description of the process being
analyzed.

In this paper, a new class of Boolean networks, called Stochastic
Boolean Networks (briefly, SBN), is presented. This kind of system
admits state variables with binary operation levels as classical
Boolean networks and the transition from a state to the following
one is governed by a stochastic process as in PBNs. The difference
between these systems and PBNs is that, at each time instant and
for each outcome of the random process, the map from the current
state to the subsequent one need not be single-valued, but can be
set-valued. The advantage of this feature is that, when the number
of possible states is too large for precise estimation or when some
essential variables are either not measurable or unknown, it is
not necessary to restrict the number of considered values to an
essential set that defines a function. In fact, a whole branch of
behaviors can be encoded by a single SBN. Moreover, the structure
of SBNs allows to cope with biological dynamical models having
non-unique solutions (Conte, Federici, & Zbilut, 2004; Kaitala &
Heino, 1996; Kaitala, Ylikarjula, & Heino, 2000; Upadhyay, 2003).
Two motivating examples are given in Section 2.

2. Notation and preliminaries

Let Z and R denote the set of integers and real numbers,
respectively. Given k ∈ Z, let Z>k := {z ∈ Z : z > k}, R>k :=

{r ∈ R : r > k}, and Z<k := {z ∈ Z>0 : z < k}. A function
α : R>0 → R>0 is of class K , denoted α ∈ K , if it is continuous,
strictly increasing and α(0) = 0. A function α : R>0 → R>0 is of
class K∞, denoted α ∈ K∞, if α ∈ K and it is unbounded. Let
(K, d) be a metric space. Since d is a metric for K, the concept of
convergence is well defined. Namely, a sequence {xν}∞ν=0 is said to
converge to x, denoted xν → x, if for every ε > 0 there exists
N ∈ Z>0 such that ν > N implies d(xν, x) 6 ε. A set-valued
mapping S : K ⇒ K is a left-total relation assigning to each
element x ∈ K a set S(x) ⊂ K. A set-valued mapping S : K ⇒ K
is outer semicontinuous at x̄ ∈ K if lim supx→x̄ S(x) ⊂ S(x̄), where
lim supx→x̄ S(x) := {y ∈ K : ∃xν → x̄, ∃yν → y, with yν ∈ S(xν)}.
A mapping S : K ⇒ K is locally bounded if, for each bounded set
K ⊂ K, S(K) :=


x∈K S(x) is bounded. A mapping S : K1 ⇒ K2 is

measurable if, for every open set O ⊂ K2, the set S−1(O) := {y ∈

K1 : S(y) ∩ O ≠ ∅} is measurable. Given A ⊂ K, a continuous
function ϱ : K → R>0 is of class PD(A), denoted ϱ ∈ PD(A), if
ϱ(x) = 0, for all x ∈ A and ϱ(x) > 0, for all x ∈ K\A. Given a finite
set Ψ ⊂ K, the symbol P (Ψ ) denotes the power set of Ψ , i.e., the
set of all the subsets ofΨ . The symbols¬,∨,∧, and⊕ represent the
entry wise logical ‘‘not’’, ‘‘or’’, ‘‘and’’, and ‘‘exclusive or’’ operators,
respectively. The symbol (·)+ denotes the next value.

2.1. The Galois field F2

Let F2 := {0, 1} denote the Galois field of order 2 (Lidl &
Niederreiter, 1994). The set of all the n-dimensional vectors whose
entries are in F2 is denoted Fn

2. Note that each vector in Fn
2 is

essentially an n-bit digital number [x1 x2 · · · xn]⊤, whose
decimal equivalent is given by πn : Fn

2 → Z>0, πn(x) =n
i=1 2

i−1ψ−1(xi), where ψ−1
: F2 → {0, 1} ⊂ Z maps each

x ∈ F2 to the corresponding integer value in {0, 1} ⊂ Z. In the
following, π−1

n denotes the inverse map of πn. Let a point y ∈ Fn
2

be given. For each x ∈ Fn
2, the distance between x and y is d(x, y) :

Fn
2 × Fn

2 → Z>0, d(x, y) :=
n

i=1 ψ
−1(xi ⊕ yi), where xi, yi ∈ F2,

because x, y ∈ Fn
2. The distance d is usually known in coding

theory as Hamming distance (Hamming, 1950), when applied to
strings of equal length. On the other hand, letting A ⊂ Fn

2, the
distance between x and A is |x|A := miny∈A d(x, y). The following
lemma,whose proof iswell known (Bourbaki, 1998), states that the
function d is a metric on Fn

2 and hence the definitions given at the
beginning of this section apply to such a field, when the distance d
is used as a metric.

Lemma 1. The pair (Fn
2, d) constitutes a metric space.

Since the pair (Fn
2, d) is a metric space, it is possible to define

the open ball of radius r > 0 about x ∈ Fn
2 as B(x, r) = {y ∈ Fn

2 :

d(y, x) < r}. A set A ⊂ Fn
2 is open if, for every x ∈ A, ∃r > 0 such

that B(x, r) ⊂ A. A set A ⊂ Fn
2 is closed if Fn

2 \ A is open. For any
set A and ε > 0, let A + B(0, ε) = {x ∈ Fn

2 : |x|A < ε}. Next
lemma characterizes the topology of the metric space (Fn

2, d).

Lemma 2. Each set A ⊂ Fn
2 is both open and closed.

Proof. By Lemma 1, (Fn
2, d) constitutes a metric space. Hence, the

open ball B(x, r) is well defined. Consider the set Ai = {x̄}, with
x̄ ∈ Fn

2. The set Ai is open because B(x̄, 1) ⊂ A. Hence, since
every set A ⊂ Fn

2 is such that A =


i∈I Ai, for some finite I , A
is open (Bourbaki, 1998, Section 2.6, Section 2.7). Consider now
Bi := Fn

2 \ Ai. The set Bi is closed, because it is the complement of
an open set. Since every set Ai =


i∈I Bi for some finite I , the set

Ai is closed. Therefore, since each set A =


i∈I Ai, for some finite
I , and the union of finitely many closed sets is closed, the set A is
closed. �

2.2. Classes of Boolean networks

A map g : Fn
2 → Fℓ2 is called Boolean and can be defined by

assigning to each of the 2n elements of Fn
2 one of the 2

ℓ elements of
Fℓ2. ADeterministic BooleanNetwork (briefly,DBN) is a discrete-time
system of the form

x+
= g(x) (1)

where x ∈ Fn
2 and g : Fn

2 → Fn
2 is a Boolean map.

In order to deal with non-unique solutions (see the subsequent
Examples 1 and2), the concept of DBN canbe extended through the
notion of Boolean networkwith set-valued transitionmap, written
formally as

x+
∈ G(x), (2)

with G : Fn
2 ⇒ Fn

2 having nonempty values for every x ∈ Fn
2.

The following lemma states that the number of dynamical
behaviors modeled by a Boolean network is bounded.

Lemma 3. Let M := 2n and N := (2M
− 1)M . There exist MM

different g : Fn
2 → Fn

2 and N different G : Fn
2 ⇒ Fn

2 such that G(x) is
nonempty for each x ∈ Fn

2.
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