
Automatica 83 (2017) 10–19

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Symbolic control design for monotone systems with directed
specifications✩

Eric S. Kim, Murat Arcak, Sanjit A. Seshia
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA

a r t i c l e i n f o

Article history:
Received 20 June 2016
Received in revised form 14 November
2016
Accepted 4 April 2017

Keywords:
Directed specifications
Abstraction
Monotone systems
Linear temporal logic
Controller synthesis

a b s t r a c t

We study the control of monotone systemswhen the objective is to maintain trajectories in a directed set
(that is, either upper or lower set) within a signal space. We define the notion of a directed alternating
simulation relation and show how it can be used to tackle common bottlenecks in abstraction-based
controller synthesis. First, we develop sparse abstractions to speed up the controller synthesis procedure
by reducing the number of transitions. Next, we enable a compositional synthesis approach by employing
directed assume–guarantee contracts between systems. In a vehicle traffic network example, we syn-
thesize an intersection signal controller while dramatically reducing runtime and memory requirements
compared to previous approaches.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

A variety of tools for symbolic controller synthesis have been
developed over the last decade to enforce complex specifications
such as those encoded in temporal logic. This paper’s goal is to
reduce the computational burden incurred with a growing system
size by exploiting system structure and specifications. In particular
we focus on monotone systems as investigated by Angeli and
Sontag (2003) and Hirsch (1985) which preserve a partial order of
states, and directed specifications which encourage either high or
lower valued signal trajectories.

A common paradigm for symbolic controller synthesis entails
first abstracting a dynamical systemwith a continuous state space
to a discrete system with a finite state space. A synthesis engine
takes the abstraction and solves a game where the system’s con-
troller seeks to enforce a specification and an adversarial envi-
ronment seeks to induce a specification violation. The choice of

✩ This work was supported in part by National Science Foundation grant CNS-
1446145, the National Science Foundation Graduate Research Fellowship Program,
National Science Foundation Expeditions grant CCF-1139138 and by TerraSwarm,
one of six centers of STARnet, a Semiconductor Research Corporation program
sponsored byMARCOandDARPA. Thematerial in this paperwas partially presented
at the 54th IEEE Conference onDecision and Control, December 15–18, 2015, Osaka,
Japan and at the 19th International Conference on Hybrid Systems: Computation
and Control (HSCC), April 12–14, 2016, Vienna, Austria. This paper was recom-
mended for publication in revised form by Associate Editor Bert Tanner under the
direction of Editor Christos G. Cassandras.

E-mail addresses: eskim@eecs.berkeley.edu (E.S. Kim),
arcak@eecs.berkeley.edu (M. Arcak), sseshia@eecs.berkeley.edu (S.A. Seshia).

game solver depends on the type of specification to be enforced.
A winning control strategy for the abstract system (if it exists) is
subsequently refined into a strategy for the continuous system; the
notion of a system relation formalizes conditions for refinement
from an abstract controller to a concrete one, as summarized
by Tabuada (2009). As the system size increases, the abstraction
procedure results in three symptoms that increase the synthesis
engine’s runtime and memory requirements:

(1) Reachability calculations within the abstraction procedure
become more expensive or conservative.

(2) The number of discrete transitions grows exponentially.
(3) The number of discrete states grows exponentially.

Addressing the first challenge, Coogan and Arcak (2015); Moor
and Raisch (2002) have used variants ofmonotonicity to efficiently
upper and lower bound the reachable sets by simulating the dy-
namics from two points. However, the latter two computational
challenges remain open. To tackle these issues, this paper utilizes
directed specifications.We develop the notion of directed alternat-
ing simulation relations and present two immediate results. First,
we introduce sparse abstractions, which prevent an exponential
blowup in the number of transitions in the abstract system, and an
associated controller refinement procedure. Second, we limit the
exponential growth in discrete states by breaking apart the synthe-
sis into a set of smaller problems. These smaller problems then use
assume–guarantee reasoning between sub-systems; soundness of
this procedurewas demonstratedby Lomuscio, Strulo,Walker, and
Wu (2010). We also show that assumptions and guarantees can

http://dx.doi.org/10.1016/j.automatica.2017.04.060
0005-1098/© 2017 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.automatica.2017.04.060
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2017.04.060&domain=pdf
mailto:eskim@eecs.berkeley.edu
mailto:arcak@eecs.berkeley.edu
mailto:sseshia@eecs.berkeley.edu
http://dx.doi.org/10.1016/j.automatica.2017.04.060


E.S. Kim et al. / Automatica 83 (2017) 10–19 11

be designed with binary search. The computational speedups from
our results are showcased in a vehicular traffic example using the
controller synthesis tool in conPAS2.

Existing tools such as CoSyMA by Mouelhi, Girard, and Gössler
(2013),SCOTSby Rungger andZamani (2016),Pessoaby Mazo Jr.,
Davitian, and Tabuada (2010), and conPAS2 by Yordanov, Tumov,
Čern, Barnat, and Belta (2012) each take a dynamical systemmodel
and perform the abstraction and refinement steps, but defer the
synthesis procedure to outside synthesis engines. The first three
tools use a fixed point algorithm over binary decision diagrams
as a synthesis engine, while cosPAS2 solves the game over a
graph; Baier and Katoen (2008) provide an overview of both these
algorithms.

Instances of compositional synthesis exist in the litera-
ture. Rungger and Zamani (2015) construct an abstraction for
an interconnected system from the abstractions of individual
sub-systems via a small-gain theorem. Nilsson and Ozay (2016)
and Sadraddini and Belta (2016) construct robust controlled in-
variant sets which act as assume–guarantee contracts between
sub-systems. Meyer, Girard, and Witrant (2015) also synthesize
controllers for monotone systems, but do not exploit directedness
to reduce the abstraction size. Dallal and Tabuada (2015) enforce
a discrete stability condition by constructing abstractions that
respect the level curves of a Lyapunov function.

This paper expands upon our previous results in Kim, Arcak,
and Seshia ( 2015, 2016). We developed a compositional synthesis
framework for vehicle traffic networks via assume–guarantee con-
tracts in Kim et al. (2015), along with preliminary results on iden-
tifying contract parameters when specifications were restricted to
a combination of safety and reachability. In Kim et al. (2016) we
introduced the notion of directed specifications for an assumption
mining problem. Our results about directed alternating simulation
relations in Section 4 and sparse abstractions in Section 5 are new.
Section 6 on compositional synthesis subsumes the results of Kim
et al. (2015) which were derived for a traffic flow model.

2. Preliminaries

2.1. Notation

For a set P , let |P|, 2P , P∗, and Pω respectively represent P ’s
cardinality, powerset (set of all subsets), and sets of finite and infi-
nite sequences of elements ofP .We let ↦→ denote a functionalmap
between a domain and a codomain, and H⇒ represent Boolean
implication. The image f (L) of a set L ⊆ P under function f :

P ↦→ R is the set of points {f (x) : x ∈ L} and the preimage f −1(N )
of a set N ⊆ R is {x ∈ P : f (x) ∈ N }. Boolean true and false
are denoted by ⊤ and ⊥. The Boolean negation of a proposition a
is ¬a, and we have logical operations ∧ (and/conjunction) and ∨

(or/disjunction).
We consider both set and logic based viewpoints for specifica-

tions φ. When φ is a set we say that x ∈ φ (‘‘x is a member of the
specification setφ’’).Whenφ is a logical formula,we say that x |= φ

(‘‘x satisfies the formula φ’’). It is easy to move between these two
viewpoints because x |= φ if and only if x ∈ φ.

2.2. Transition systems and environments

We consider two types of transition systems. First, an open
system Σ = (X ,X0,U,D, δ,Y, h) consists of a state space X ,
an initial set X0 ⊆ X , a finite set of control modes U , a set of
uncontrollable environment disturbances D, a non-deterministic
transition relation δ : X × U × D ↦→ 2X , an output space Y , and a
deterministic output map h : X ↦→ Y . Such a transition system is
said to be nonblocking if δ(x, u, d) is non-empty for all x ∈ X , u ∈ U ,
and d ∈ D, and deterministic if such an δ(x, u, d) is a singleton.

We consider assumptions on the environment behavior φa ⊆ D
that restrict disturbances to a subset of the disturbance space at
all times. For example, D may be R≥0 while φa = {x ∈ R≥0 :

x ≤ 5}. In later sections, this assumption set will vary as part of
a contract between systems. From an open system and environ-
ment assumption, we construct a nonreactive system Λ(Σ, φa) =

(X ,X0,U, ∆,Y, h) where ∆ : X × U ↦→ 2X and x′
∈ ∆(x, u)

if and only if there exists a d ∈ φa such that x′
∈ δ(x, u, d).

In effect, any exogenous disturbance is now implicitly encoded
as additional non-determinism in the transition relation ∆ and
δ(x, u, d) ⊆ ∆(x, u) for all d ∈ φa and all x, u.

A behavior of Λ(Σ, φa) is any sequence y = y0y1 . . . ∈ Yω

such that there exist an x0 ∈ X0 and a pair of sequences u =

u0u1 . . . ∈ Uω and x = x0x1 . . . ∈ Xω , generating y according to
xk+1 ∈ ∆(xk, uk) and yk = h(xk). A control policy C : X ∗

↦→ U
takes a finite state sequence x = x0x1 . . . xk and outputs a control
mode uk for all times k, and is paired with a set of initial states
XC

0 ⊆ X0, forming a tuple (XC
0 ,C). We let BΛ(Σ,φa)(X

C
0 ,C) ⊆ Yω

be the set of all possible behaviors when the control strategy is
placed in closed loop with Λ(Σ, φa), i.e., a controlled trajectory
y = y0y1 . . . ∈ BΛ(Σ,φa)(X

C
0 ,C) satisfies x0 ∈ XC

0 , xk+1 ∈ ∆(xk, uk),
uk = C(x0x1 . . . xk), and yk = h(xk). An output specification φspec ⊆

Yω encodes a set of desirable behaviors.

Problem 1. Given a nonreactive system Λ(Σ, φa) and a specifi-
cation φspec ⊆ Yω , find a control strategy (XC

0 ,C) such that XC
0

is nonempty and all trajectories of the closed loop system satisfy
BΛ(Σ,φa)(X

C
0 ,C) ⊆ φspec.

Solving Problem 1 can be viewed as a sequential game between
a controller who wants to satisfy the specification despite all
actions from an adversarial environment that picks disturbances.
After the controller picks a control mode, the environment may
choose amongst the set of possible transitions allowed under tran-
sition relation ∆. We do not develop a new controller synthesis
engine, but in our examples use an existing solver in cosPAS2 and
propose effective pre-processing techniques that enable us to solve
larger problems.

3. Partial orders, directed sets, and monotone systems

3.1. Partial orders

A partially ordered set P has an associated binary relation ≤P
where for all p1, p2, p3 ∈ P the binary relation satisfies (1) p1 ≤P
p1, (2) if p1 ≤P p2 and p2 ≤P p1 then p1 = p2 and, (3) if
p1 ≤P p2 and p2 ≤P p3 then p1 ≤P p3. We define ≥P so that
p1 ≥P p2 holds if and only if p2 ≤P p1. If neither p1 ≤P p2
nor p1 ≥P p2 holds, we say that p1 and p2 are incomparable. An
interval [a, b] ⊆ P is the set {x ∈ P : a ≤P x ≤P b}. Given a
collection of partially ordered sets Pi and relations ≤Pi with index
i ∈ A, let P =

∏
i∈APi, and πi(p) : P ↦→ Pi map p ∈ P to its ith

component. For p1, p2 ∈ P , the product ordering relation p1 ≤P p2
holds if and only if πi(p1) ≤Pi πi(p2) for all i ∈ A. Similarly,
a partial ordering p ≤Pω q between a pair of infinite sequences
p = p0p1 . . . and q = q0q1 . . . holds if and only if pk ≤P qk for all k.
A function between partially ordered sets f : P ↦→ R is amonotone
function if p1 ≤P p2 implies f (p1) ≤R f (p2) for all p1, p2 ∈ P . The
composition of monotone functions is also a monotone function.

3.2. Directed specifications

Definition 2. A subset L of the partially ordered set P is a lower
set if for all pairs x, y ∈ P

(y ∈ L ∧ x ≤P y) H⇒ x ∈ L. (1)

It is an upper set if y ∈ L and x ≥P y implies x ∈ L. It is directed if
it is either a lower or an upper set.



Download English Version:

https://daneshyari.com/en/article/4999721

Download Persian Version:

https://daneshyari.com/article/4999721

Daneshyari.com

https://daneshyari.com/en/article/4999721
https://daneshyari.com/article/4999721
https://daneshyari.com

