
Automatica 83 (2017) 37–46

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Exponential convergence of a distributed algorithm for solving linear
algebraic equations✩

Ji Liu a, A. Stephen Morse b, Angelia Nedić c, Tamer Başar a

a University of Illinois at Urbana-Champaign, United States
b Yale University, United States
c Arizona State University, United States

a r t i c l e i n f o

Article history:
Received 12 October 2015
Received in revised form 16 April 2017
Accepted 18 April 2017

a b s t r a c t

In a recent paper, a distributed algorithmwas proposed for solving linear algebraic equations of the form
Ax = b assuming that the equation has at least one solution. The equation is presumed to be solved
by m agents assuming that each agent knows a subset of the rows of the matrix

[
A b

]
, the current

estimates of the equation’s solution generated by each of its neighbors, and nothing more. Neighbor
relationships are represented by a time-dependent directed graph N(t) whose vertices correspond to
agents and whose arcs characterize neighbor relationships. Sufficient conditions on N(t) were derived
under which the algorithm can cause all agents’ estimates to converge exponentially fast to the same
solution to Ax = b. These conditions were also shown to be necessary for exponential convergence,
provided the data about

[
A b

]
available to the agents is ‘‘non-redundant’’. The aim of this paper is to

relax this ‘‘non-redundant’’ assumption. This is accomplished by establishing exponential convergence
under conditions which are the weakest possible for the problem at hand; the conditions are based on a
new notion of graph connectivity. An improved bound on the convergence rate is also derived.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past few decades, there has been considerable in-
terest in developing algorithms for information distribution and
computation among agents via local interactions (Jadbabaie, Lin,
& Morse, 2003; Tsitsiklis, 1984). Recently, the need for distributed
processing has arisen naturally in multi-agent and sensor net-
works (Dimakis, Kar, Moura, Rabbat, & Scaglione, 2010; Liu, Mou,
Morse, Anderson, & Yu, 2011; Olfati-Saber, Fax, & Murray, 2007)
because autonomous agents or mobile sensors are physically sep-
arated from each other and communication constraints limit the
flow of information across a multi-agent or sensor network and
consequently preclude centralized processing. As a consequence,
distributed computation and decisionmaking problems of all types
have arisen naturally; notable examples include consensus, multi-
agent coverage problems, the rendezvous problem, localization of

✩ Proofs of some results in this paper are not included due to space limitations
and can be found in Liu, Morse, Nedić, and Başar (2017). The material in this
paper was partially presented at the 53rd IEEE Conference on Decision and Control,
December 15–17, 2014, Los Angeles, CA, USA. This paper was recommended for
publication in revised form by Associate Editor Antonis Papachristodoulou under
the direction of Editor Christos G. Cassandras.
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sensors in a multi-sensor network, and the distributed manage-
ment of multi-agent formations. One of the most important nu-
merical computations involving real numbers is solving a system
of linear algebraic equations, which has received much attention
for a long time, especially in the parallel processing community
where the main objective is to solve the system faster or more
accurately. It is with these thoughts in mind that we are interested
in the problem of solving a system of linear algebraic equations
in a distributed manner, introduced in more precise terms as
follows.

Consider a network of m > 1 autonomous agents which are
able to receive information from their ‘‘neighbors’’. Neighbor re-
lationships are characterized by a time-dependent directed graph
N(t) withm vertices and a set of arcs defined so that there is an arc
in the graph from vertex j to vertex iwhenever agent j is a neighbor
of agent i. Thus, the directions of arcs represent the directions
of information flow. For simplicity, we take each agent to be a
neighbor of itself. Thus,N(t) has self-arcs at all vertices. Each agent
i has a real-time dependent state vector xi(t) taking values in Rn,
and weassume that the information agent i receives fromneighbor
j is only the current state vector of neighbor j. We also assume that
agent i knows only a pair of real-valuedmatrices (Ani×n

i , bni×1
i ). The

problemof interest is to devise local algorithms, one for each agent,
which will enable all m agents to iteratively compute the same
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solution to the linear equation Ax = bwhere

A =

⎡⎢⎢⎣
A1
A2
...

Am

⎤⎥⎥⎦
n̄×n

, b =

⎡⎢⎢⎣
b1
b2
...

bm

⎤⎥⎥⎦
n̄×1

and n̄ =
∑m

i=1ni. We assume that Ax = b has at least one solution,
unless stated otherwise. The algorithm presented in this paper
works for both the case when Ax = b has a unique solution and
the case when Ax = b has multiple solutions. For the case when
Ax = b does not have a solution, the algorithm can be modified to
obtain a least squares solution via a centralized initialization step
(see Section 5.4).

Recently, a distributed algorithm was proposed in Mou, Liu,
and Morse (2013) for the synchronous version of the problem just
formulated, and with slight modification, that is for a restricted
asynchronous version of the problem inwhich transmission delays
are not taken into account. A more general asynchronous version
of the problem in which transmission delays are explicitly taken
into account was addressed in Liu, Mou, and Morse (2013).

The synchronous version of the problem considered here can be
viewed as a distributed parameter estimation problem (Bolognani,
Favero, Schenato, & Varagnolo, 2010; Kar, Moura, & Ramanan,
2012; Xiao, Boyd, & Lall, 2005). One approach to the problem is
to reformulate it as a distributed convex optimization problem,
which has a rich literature (Boyd, Parikh, Chu, Peleato, & Eck-
stein, 2010; Chang, Nedić, & Scaglione, 2014; Duchi, Agarwal, &
Wainwright, 2012; Gharesifard & Cortés, 2014; Jakovetić, Moura,
& Xavier, 2014; Nedić & Olshevsky, 2015; Nedić & Ozdaglar, 2009;
Nedić, Ozdaglar, & Parrilo, 2010; Shi, Ling, Wu, & Yin, 2014; Wang
& Elia, 2014; Zanella, Varagnolo, Cenedese, Pillonetto, & Schenato,
2012). An alternative approach to the problem is to view it as a
constrained consensus problem (Lin & Ren, 2014; Liu, Nedić, &
Başar, 2014c; Nedić et al., 2010). A similar problem with more
restrictive assumptions has been studied in Lu and Tang (2009a, b).
Theproblem is related to classical parallel algorithms such as Jacobi
iterations (Margaris, Souravlas, & Roumeliotis, 2007), so-called
‘‘successive over-relaxations’’ (Young, 1950), and the Kaczmart
method (Gordon, Bender, & Herman, 1970). The problem is also
related to the problem of estimation on graphs from relative mea-
surements in which A is determined by the underlying graph and
noisy measurements are taken into account (Barooah & Hespanha,
2007, 2008, 2009).

The differences and advantages of the algorithm in Mou et al.
(2013), compared with those in the literature (Bolognani et al.,
2010; Lin & Ren, 2014; Nedić & Ozdaglar, 2009; Nedić et al., 2010;
Tron & Vidal, 2011; Xiao et al., 2005) (Gharesifard & Cortés, 2014;
Gordon et al., 1970; Kar et al., 2012; Lu & Tang, 2009a, b; Margaris
et al., 2007; Young, 1950), have been discussed in Liu et al. (2013),
Mou et al. (2013) and Mou, Liu, and Morse (2015). Specifically, the
algorithm in Mou et al. (2013)

(1) is applicable to any pair of real matrices (A, b) for which
Ax = b has at least one solution,

(2) is capable of finding a solution exponentially fast,
(3) is capable of finding a solution for a time-varying directed

graph sequence under appropriate joint connectedness,
(4) is capable of finding a solution using at most an n-

dimensional state vector received at each clock time from
each of its neighbors,

(5) is applicable without imposing restrictive requirements
such as (a) the assumption that each agent is constantly
aware of an upper bound on the number of neighbors of each
of its neighbors or (b) the assumption that all agents are able
to share the same time-varying step size.

See Section II in Mou et al. (2015) for details. To the best of our
knowledge, there is no distributed convex optimization algorithm
which simultaneously satisfies all the above properties. We pro-
vide a comparison with competing algorithms in the following
table.

Paper Convergence rate Neighbor graph

This paper Exponentially fast Time-varying, directed
Bolognani et al.
(2010)

Exponentially fast Time-varying, undirected

Nedić et al. (2010) Exponentially fast Time-invariant, complete

Nedić and Olshevsky
(2015)

O(ln t/
√
t) Time-varying, directed

Carli, Notarstefano,
Schenato, and
Varagnolo (2015)

(locally) exponentially
fast

Time-invariant, directed

Chang, Hong, Liao,
and Wang (2016)

Exponentially fast Time-invariant, star

Zhang and Kwok
(2014)

O(1/t) Time-invariant, star

Zanella et al. (2012) Not explicit Time-invariant,
undirected

From the table, it can be seen that only the algorithm presented
in this paper can solve the problem exponentially fast for time-
varying, directed, neighbor graphs. It is worth noting that the idea
in Bolognani et al. (2010) can solve the problem for time-varying,
directed, neighbor graphs by using double linear iterations which
are specifically tailored to the distributed averaging problemwhen
unidirectional communications exist (Liu & Morse, 2012); but the
downside of this idea is that the amount of data to be communi-
cated between agents does not scale well as the number of agents
increases.

Continuous-time distributed algorithms for the problem in this
paper have also received some attention lately; see Anderson,
Mou, Morse, and Helmke (2016), Liu, Chen, Başar, and Nedić
(2016), Shi and Anderson (2016) and Yang and Tang (2015).

From the preceding discussion, a significant advantage of the
algorithm in Mou et al. (2013) over the other existing ones is its
capability to solve the problem exponentially fast even when the
underlying neighbor graph is directed and time-varying, using only
an n-dimensional state vector transmitted between neighboring
agents at each clock time. Accordingly, our aim in this paper is to
analyze the algorithm proposed in Mou et al. (2013), and partic-
ularly to determine the weakest graph-theoretic condition under
which the algorithmcan solve thedistributed linear equationprob-
lem exponentially fast. We emphasize exponential convergence
because it is robust against certain types of perturbation, analogous
to exponential stability of linear systems (Rugh, 1996); it will be
clear shortly that the system determined by the algorithm in Mou
et al. (2013) is a discrete-time linear time-varying system.

In this paper, we focus on the synchronous version of the
problem, but the results derived can be straightforwardly extended
to asynchronous versions using the analysis tools in Liu et al.
(2013). In Mou et al. (2015), a necessary and sufficient graph-
theoretic condition was obtained under a ‘‘non-redundant’’ as-
sumption. Roughly speaking, the set ofm agents is non-redundant
if a distributed solution toAx = b cannot be obtained by any proper
subset of the full set of m agents; otherwise, the set is redundant.
The formal definition is given as follows.

We say that agents with labels in V = {i1, i2, . . . , iq} ⊂

{1, 2, . . . ,m} are redundant if any solution to the equations Aix =

bi for all i in the complement of V , is a solution to Ax = b. To derive
an algebraic condition for redundancy, suppose that z is a solution
to Ax = b. Write V̄ for the complement of V in {1, 2, . . . ,m}.
Then, any solution w to the equations Aix = bi, i ∈ V̄ , must
satisfy w − z ∈

⋂
i∈V̄ ker Ai. Thus, agents with labels in V will
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