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a b s t r a c t

This paper deals with the stabilization in the sample-and-hold sense of nonlinear, control affine, retarded
systems, affected by actuation disturbances and observation errors. Input-to-state stability redesign
methods are used in order to design a new sampled-data controller. It is shown that stabilization in
the sample-and-hold sense can be preserved by means of this new controller, regardless of the above
disturbances and errors. It is assumed that both actuator disturbance and observation error are bounded,
and the (arbitrary) bounds are known a-priori. It is moreover assumed that the observation errors do not
affect or affect marginally the new control term obtained by input-to-state stability redesign. Simulations
on a continuous stirred tank reactor with recycle validate the theoretical results.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Sampled-data stabilization of linear (see Fridman, 2010; Liu
& Fridman, 2012; Seuret, 2012; Seuret & Peet, 2013; Seuret &
da Silva, 2012), bilinear (see Omran, Hetel, Richard, & Lamnabhi-
Lagarrigue, 2014) and nonlinear systems (see Karafyllis & Krstic,
2012a, 2012b; Laila, Nesic, & Teel, 2002; Mazenc, Malisoff, & Dinh,
2013) has been studied in the literature by many approaches,
such as: the time-varying delay approach (see Fridman, 2010,
2014; Fridman, Seuret, & Richard, 2004); the approximate system
discretization approach (see Grune & Nesic, 2003; Laila et al.,
2002; Nesic & Grune, 2005; Nesic & Teel, 2004; Nesic & Teel, 2001;
Nesic, Teel, & Kokotovic, 1999; Postoyan, Ahmed-Ali, & Lamnabhi-
Lagarrigue, 2009); the hybrid system approach (Carnevale, Teel, &
Nesic, 2007; Dacic & Nesic, 2007; Goebel, Sanfelice, & Teel, 2009,
2012; Haddad, Chellaboina, & Nersesov, 2014; Naghshtabrizi, Hes-
panha, & Teel, 2006, 2008, 2010; Nesic & Teel, 2004; Nesic, Teel,
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& Carnevale, 2009); the stabilization in the sample-and-hold sense
approach (see Clarke, 2010; Clarke, Ledyaev, Sontag, & Subbotin,
1997). In particular, the notion of stabilization in the sample-
and-hold sense, introduced in 1997 in Clarke et al. (1997), has
been widely studied for systems described by ordinary differen-
tial equations. The stabilization problem, in the continuous time,
for nonlinear systems with delays in the state and/or in the in-
put/output channels, has been studied by many researchers in
the last years (see, for instance, Germani, Manes, & Pepe, 2003;
Hua, X.Guan, & Shi, 2004; Liberis & Krstic, 2012, 2013; Liberis,
Jankovic, & Krstic, 2012; Lien, 2004; Marquez-Martinez & Moog,
2004; Mazenc, Niculescu, & Bekaik, 2011; Oguchi & Richard, 2006;
Oguchi, Watanabe, & Nakamizo, 2002; Pepe, 2013; Yang & Wang,
2012; Zhang & Cheng, 2005). Sampled-data controllers for non-
linear systems, under delayed measurements and delayed control
law, have been considered in Karafyllis and Krstic (2012a, 2012b).
More recently, the stabilization in the sample-and-hold sense has
been extended to fully nonlinear time-delay systems (see Pepe,
2014, 2016).

It is well known that actuation disturbances and observation
errors can deteriorate the performances of continuous-time con-
trollers, and even cause instabilities (see, for instance, Malisoff
& Sontag, 2004; Sontag, 1989a). The same, or even worse, kind
of problems arises when the control law is applied by sampling
and holding, and the deterioration of the performances may be
significant specially with discontinuous feedbacks (see Ledyaev &
Sontag, 1999; Sontag, 1999a, 1999b).
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In Ledyaev and Sontag (1999), Prieur (2005), Prieur and Tre-
lat (2006) and Sontag (1999a, 1999b), the problems related to
(suitably small/vanishing) actuation disturbances and observation
errors, in sampled-data stabilization, have been extensively dealt
with, for systems described by ordinary differential equations.
In Pepe (2015), concerning the stabilization in the sample-and-
hold sense of systems described by ordinary differential equations,
an input-to-state stability redesign method is exploited, in order
to attenuate the effects of bounded actuation disturbances and
suitably bounded observation errors.

As far as sampled-data control laws for nonlinear time-delay
systems are concerned, the problems related to arbitrarily large ac-
tuation disturbances and arbitrarily large observation errors have
never been dealt with in the literature (see Pepe, 2014, 2016 and
references therein). In particular, the problem of arbitrarily reduc-
ing the effect of an arbitrarily large actuator disturbance, as well as
of an arbitrarily large observation error, has not been exhaustively
addressed in the literature concerning nonlinear retarded systems.
In this paper, we fill this gap.

We show, for the important class of nonlinear, control-affine,
time-delay systems, that the input-to-state stability redesign
method can be successfully used for sampled-data stabilization,
in order to attenuate the effects of any bounded actuation distur-
bance and any bounded observation error, as long as this observa-
tion error does not affect, or affectsmarginally, the newadded state
feedback. Moreover, in order to take into account input saturation
constraints (see, for instance, Fridman & Dambrine, 2009; Pepe
& Ito, 2012 and Zhou, Lin, & Duan, 2010), here the new added
state feedback sampled-data control term is suitably bounded, in
the system state space. The bound mainly depends on the actua-
tion disturbances and observation errors amplitudes. The results
here provided improve significantly the robustness property of
stabilizers in the sample-and-hold sense for nonlinear time-delay
systems.

Here the standard LgV-type term to add to the control law
is considered by the introduction of suitable control Lyapunov–
Krasovskii functionals which are invariantly differentiable and
smoothly separable. In order to fulfill inputmagnitude constraints,
we incorporate saturation into the LgV-type control term. The LgV-
type term can manage also observation errors, provided that their
bounds are known a-priori, and as long as it is marginally affected
by these errors. This fact can happen, for instance, when the LgV-
term depends on state variables that can be measured better than
other state variables, or when the variation of the LgV-term is
sufficiently slow with respect to measurement errors.

We apply the theoretical results to a continuous stirred tank
reactor with recycle time-delay (see Di Ciccio, Bottini, Pepe, &
Foscolo, 2011). Sontag’s universal formula is used in order to
obtain a steepest descent feedback induced by a suitable control
Lyapunov–Krasovskii functional (see Pepe, 2013, Sontag, 1989b).
Then, the input-to-state stability redesign method is used to find
the new term in the controller. It is shown that all the assumptions,
introduced for the theory developed in this paper, hold for the
continuous stirred tank reactor. Performed simulations show that
the new robustified sampled-data state feedback can drastically
reduce the effect of significant actuation disturbances and mea-
surement errors affecting both the reactant concentration and the
reactor temperature. In particular, the robustified controller forces
the state variables into a neighborhood of the origin which ismuch
smaller than the one obtained with the non-robustified controller.
A preliminary version of this paper has been published in Di
Ferdinando and Pepe (2016).

The paper is organized as follows: in Section 2, the problem
under investigation is stated; in Section 3 a quick presentation
of the main result is shown; in Section 4 the main assumptions,
needed throughout the paper, are introduced and the new de-
signed sampled-data control law is shown; in Section 5 theoretical

convergence results are provided; in Section 6 the application of
the provided methodology on a continuous stirred tank reactor
with recycle is shown. For the sake of readability, the involved
proof of the main result is reported in the Appendix.
Notation N denotes the set of nonnegative integer numbers, R
denotes the set of real numbers, R⋆ denotes the extended real line
[−∞,+∞], R+ denotes the set of nonnegative reals [0,+∞). The
symbol |·| stands for the Euclidean norm of a real vector, or the
induced Euclidean norm of a matrix. For a given positive integer
n and a given positive real h, the symbol Bn

h denotes the subset
{x ∈ Rn

: |x| ≤ h}. The essential supremum norm of an essentially
bounded function is indicated with the symbol ∥·∥∞. For a positive
integer n, for a positive real ∆ (maximum involved time-delay): C
and W 1,∞ denote the space of the continuous functions mapping
[−∆, 0] into Rn and the space of the absolutely continuous func-
tions, with essentially bounded derivative, mapping [−∆, 0] into
Rn, respectively;Q denotes the space of bounded, right-continuous
functions, with possibly a finite number of points with jump-type
discontinuity, mapping [−∆, 0) into Rn. For φ ∈ C, φ[−∆,0) is the
function inQ defined, for τ ∈ [−∆, 0), as φ[−∆,0) (τ ) = φ (τ). For a
positive real p, for φ ∈ C, Cp (φ) =

{
ψ ∈ C : ∥ψ − φ∥∞ ≤ p

}
. The

symbol Cp denotes Cp (0). For a continuous function x : [−∆, c) →

Rn, with 0 < c ≤ +∞, for any real t ∈ [0, c), xt is the function
in C defined as xt (τ ) = x (t + τ) , τ ∈ [−∆, 0]. We recall that
a continuous function γ : R+

→ R+ is: of class P0 if γ (0) = 0;
of class P if it is of class P0 and γ (s) > 0, s > 0; of class
K if it is of class P and strictly increasing; of class K∞ if it is
of class K and unbounded. The symbol Id denotes the identity
function in R+. The symbol ◦ denotes composition (of functions).
For a given positive integer n, for a symmetric, positive definite
matrix P ∈ Rn×n, λmax (P) and λmin (P) denote the maximum
and the minimum eigenvalue of P , respectively. Throughout the
paper, ODE stands for ordinary differential equation, RFDE stands
for retarded functional differential equation, ISS stands for input-
to-state stable or input-to-state stability, CLKF stands for control
Lyapunov–Krasovskii functional and CSTR stands for continuous
stirred tank reactor.

2. Problem statement

Let us consider a time-delay, control-affine nonlinear system,
described by the following equations (see Hale & Lunel, 1993;
Kolmanovskiii & Myshkis, 1999, Pepe, 2009):
.
x (t) = f (xt)+ g (xt) u (t) , t ≥ 0, a.e.
x (τ ) = x0 (τ ) , τ ∈ [−∆, 0] , x0 ∈ C,

(1)

where: x (t) ∈ Rn, n is a positive integer; ∆ is a positive real, the
maximum involved time-delay; xt ∈ C; f is a map from C to Rn,
Lipschitz on bounded sets; g is a map from C to Rn×m, Lipschitz
on bounded sets; m is a positive integer; u (t) ∈ Rm is the input
signal, Lebesgue measurable and locally essentially bounded. Eq.
(1) admits a locally absolutely continuous solution in a maximal
time interval [0, b), with 0 < b ≤ +∞ (see Hale & Lunel, 1993).

In the following, the notion of semi-global practical stability,
which is typical in the nonlinear sampled-data systems literature
(see for instance Carnevale et al., 2007; Grune & Nesic, 2003;
Karafyllis & Krstic, 2012; Nesic & Teel, 2004; Postoyan et al., 2009),
is used. It is shown in Pepe (2014), that a steepest descent feedback
k : C → Rm (continuous or not), locally bounded, suitably induced
by a CLKF, is a stabilizer in the sample-and-hold sense for the sys-
tem (1). It means that: for any large ball and small ball of the origin,
there exist a sampling period and a positive time T , such that, if the
state feedback k is sampled and held by this (or smaller) sampling
period, the trajectories starting in the large ball are kept uniformly
bounded, are driven into the small ball in time T , and are kept
in thereafter (see Definition 5.2 in Pepe (2014) for more details).
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