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a b s t r a c t

Neural fields are integro-differential equations describing spatiotemporal activity of neuronal popula-
tions. When considering finite propagation speed of action potentials, neural fields are affected by space-
dependent delays. In this paper, we provide conditions under which such dynamics can be robustly
stabilized by a proportional feedback acting only on a portion of the neuronal population and by relying on
measurements of this subpopulation only. To that aim, in line with recent works, we extend the concept
of input-to-state stability (ISS) to generic nonlinear delayed spatiotemporal dynamics and provide
a small-gain result relying on Lyapunov–Krasovskii functionals. Exploiting the robustness properties
induced by ISS, we provide conditions under which a uniform control signal can be used for the whole
controlled subpopulation and we analyze the robustness of the proposed strategy to measurement and
actuation delays. These theoretical findings are compared to simulation results in a model of pathological
oscillations generation in Parkinson’s disease.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The use of spatiotemporal models to describe the activity of
neuronal populations is considerably increasing. This success is
due to technological advances, including electrode arrays and brain
imaging, that allow recordings of unprecedented resolution in
both time and space. The possibility to represent the spatiotem-
poral evolution of neural activity constitutes a crucial feature to
deepen our understanding of cerebral functions or diseases that
involve propagating waves or pattern formation, such as memory,
epilepsy, or Parkinson’s disease (Bressloff, 2012; Coombes et al.,
2014).

Neural fields are nonlinear integro-differential equations
designed tomodel the spatiotemporal evolution of neuronal popu-
lations. They offer a good compromise between physiological plau-
sibility, richness of behaviors, and analytical tractability. Neural
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fields dynamics are derived based on statistical considerations by
assuming that neural activity evolves on a continuous medium.
They rely on the seminal works (Amari, 1977; Wilson & Cowan,
1973). They have been the subject of an intense research, with a
wide range of applications to neuroscience: we refer the reader
to Bressloff (2012) for a detailed survey on neural fields. From an
analytical point of view, several works have been devoted to the
existence and estimation of equilibrium patterns, local and global
stability analysis, bifurcation analysis, and existence of periodic
orbits: see e.g. Faugeras et al., (2009); Laing et al., (2002); Pinto
& Ermentrout, (2001); Veltz & Faugeras, (2010).

A key source of complexity, and subsequent richness of pro-
ducible dynamical behaviors, lie in the delays induced by the
non-instantaneous communication between neurons. From a
physiological perspective, these delays are needed to model the
finite speed of signals along axons. They typically depend on the
physical distance between the considered neurons. Delayed neu-
ral fields have been the subject of several mathematical studies,
including Atay & Hutt, (2004, 2006); beim Graben & Hutt, (2014);
Veltz & Faugeras, (2011).

A central question in the analytical study of neural fields stands
in the stability of stationary solutions. This question is crucial for
the understanding of the resulting brain function as modeled by
the equilibrium pattern. In some applications, it is also motivated
by the need for non-oscillating responses. In the case of Parkinson’s
disease, which is the original motivation for the present work,
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such oscillations in specific frequency bands are correlated with
motor symptoms. The mechanisms for this pathological oscilla-
tions onset are still a matter of debate, but are believed to be
linked to the combination of propagation delays and exaggerated
synapticweights betweenneuronal populations (Nevado-Holgado
et al., 2010; Pasillas-Lépine, 2013; Plenz & Kital, 1999). Following
this hypothesis, a natural way to improve motor performance
would be to attenuate these pathological oscillations, by relying
on electrical (Benabid et al., 1991) or optical (Gradinaru et al.,
2009) stimulation. This was investigated in Haidar et al. (2016)
by relying on a model of the averaged activity, and then extended
in Detorakis et al. (2015) to spatiotemporal dynamics.

Despite numerous theoretical developments on neural fields,
with or without delays, the question of their stabilization by a con-
trol signal hadnot yet been addressed. The purpose of this note is to
analyze the stability and robustness induced by proportional feed-
back control. In order to cope with implementation constraints,
we consider the case when the stimulation signal impacts directly
only a portion of the neuronal population, which we refer to as the
‘‘controlled population’’. We also impose that the feedback relies
only on measurements on this controlled population in order to
limit the number of required sensing electrodes. Our main result
states that global robust stabilization of delayed neural fields can
always be achieved provided that the internal synaptic strength
of the ‘‘uncontrolled’’ population is lower than the inverse of the
Lipschitz constant of the activation function. This result in turn
corrects a flaw in the (incomplete) proof provided in Detorakis et
al. (2015). We also address two constraints of practical relevance,
which were addressed only through simulations in Detorakis et
al. (2015). The first one is the limited number of available stim-
ulation points: we show that stabilization can still be achieved
with a unique control signal provided that the synapticweights are
homogeneous enough. The second one is the unavoidable feedback
delays needed to acquire and estimate the neural activity:we show
that the considered proportional scheme is robust to such delays
but that, not surprisingly, this robustness may decrease as the
feedback gain increases.

In order to establish these results, we rely on a spatiotemporal
extension of input-to-state stability (ISS, (Sontag, 1989, 2008)).
This extension imposes that the state’s L2-norm over the spatial
domain be bounded by a vanishing function of the spatial L2-
norm of initial conditions plus a term ‘‘proportional’’ to the spatial
L2-norm of exogenous inputs. A further extension is required in
order to allow for delayed dynamics. After having extended the
classical Lyapunov sufficient condition for ISS (Sontag, 1989), we
present a small-gain theorem applicable to such class of systems
(Section 3). This extension is in line with recent works addressing
ISS for infinite-dimensional systems (Dashkovskiy&Mironchenko,
2013; Karafyllis & Jiang, 2007; Mironchenko & Ito, 2016; Prieur
& Mazenc, 2012), including retarded functional differential equa-
tions (Karafyllis et al., 2008; Mazenc et al., 2008; Pepe & Jiang,
2006; Teel, 1998). Focusing on delayed neural fields under partial
proportional feedback, we then show that the uncontrolled popu-
lation is ISS with respect to the state of the controlled population
and possible exogenous signals, provided that the spatial L2-norm
of its internal synaptic weights is below a certain bound. On the
other hand, we show that the controlled population can always
be made ISS by picking a sufficiently large feedback gain. ISS of
the overall closed-loop system is then established based on small-
gain arguments. Both stabilization by a single stimulation signal
and robustness to feedback delays are addressed by exploiting the
robustness induced by the ISS property (Section 4). Simulations are
then presented in Section 5 to confirmour theoretical expectancies
and to evaluate the performance of the considered control laws
(proportional, uniform, and involving feedback delays).

Notation. Given x = (x1, . . . , xn)T ∈ Rn, |x| denotes its Euclidean
norm: |x| :=

√
x21 + · · · + x2n. Given two setsΩ1 andΩ2, C(Ω1, Ω2)

(resp. C1(Ω1, Ω2)) denotes the set of all continuous (resp. continu-
ously differentiable) functions from Ω1 to Ω2. L2(Ω1, Ω2) denotes
the set of all square integrable functions from Ω1 to Ω2, meaning
all functions f : Ω1 → Ω2 such that

∫
Ω1
|f (s)|2ds < ∞.

Given a set Ω ⊂ Rq, #Ω denotes its Lebesgue measure. Given
f : Ω → Rn, with Ω = Ω1 × · · ·Ωq where Ωi ⊂ R for
each i ∈ {1, . . . , q}, we compactly write

∫
Ω
f (r)dr to denote the

multiple integral
∫

Ω1
. . .
∫

Ωq
f (r)drq . . . dr1, with r =: (r1, . . . , rq)T .

We define Fn
:= L2(Ω,Rn) and Cn

:= C([−d̄; 0],Fn) for some
constant d̄ > 0.Fn is a Banach space for the L2-norm ∥·∥Fn defined
as ∥x∥Fn :=

√∫
Ω
|x(s)|2ds for each x ∈ Fn. Similarly, Cn is a Banach

space for the norm ∥ · ∥Cn defined as ∥x∥Cn := supt∈[−d̄;0]∥x(t)∥Fn

for all x ∈ Cn. We also denote by Un the set of all measurable
locally bounded functions from R≥0 to Fn. When the context is
sufficiently clear, we will simply refer to Fn, Cn and Un as F , C
and U respectively. Given x ∈ C and t ∈ [−d̄; 0], we indicate
by [x(t)](r) the value taken by the function x(t) ∈ F at position
r ∈ Ω . A function α : R≥0 → R≥0 is said to be of class K if it
is continuous, zero at zero and increasing. It is said to be of class
K∞ if it satisfies additionally lims→+∞α(s) = +∞. A function
β : R≥0 × R≥0 → R≥0 is said to be of class KL if s ↦→ β(s, t) is of
classK for any fixed t ∈ R≥0 and, for any fixed s ∈ R≥0, t ↦→ β(s, t)
is continuous and non-increasing and tends to zero as its argument
tends to+∞.

2. Delayed neural fields

We start by introducing the spatiotemporal model under con-
cern. Delayed neural fields are integro-differential equations of the
form:

τi(r)
∂zi
∂t

(r, t) = −zi(r, t)

+ Si

⎛⎝ n∑
j=1

∫
Ω

wij(r, r ′)zj(r ′, t − dj(r, r ′))dr ′ + Iexti (r, t)

⎞⎠ , (1)

for i ∈ {1, . . . , n}. Ω denotes a set ofRq, q ∈ {1, 2, 3}, representing
the physical support of the populations; throughout this paper, we
will assume that Ω is compact. r, r ′ ∈ Ω are the space variables,
whereas t ∈ R≥0 is the time variable. zi(r, t) ∈ R represents the
neuronal activity of population i, at position r ∈ Ω , and at time
t ∈ R≥0. τi(r) > 0 is the time decay constant of the activity of
population i at position r ∈ Ω . The kernel wij : Ω × Ω → R
is a bounded function describing the synaptic strength between
location r ′ in population j and location r in population i. Iexti :

Ω ×R≥0 → R is a bounded function describing the external input
of population i, arising either from the influence of exogenous
cerebral structures or from an artificial stimulation device. The
function dj : Ω × Ω → [0; d̄], d̄ ≥ 0, is a continuous function
representing the axonal, dendritic and synaptic delays between
a pre-synaptic neuron at position r ′ in population j and a post-
synaptic neuron at position r . Si : R → R is a nondecreasing
globally Lipschitz function, known as the activation function of the
neural population i.

The compactness assumption onΩ is realistic as neuronal pop-
ulations are typically circumscribed to a limited physical domain.
Although τi is assumed to be uniform in most existing works on
neural fields, we allow it to depend on the position r for the sake
of generality. Similarly, in most neuroscience works, the synaptic
kernels wij are assumed to depend only on the distance between
r and r ′ (i.e. wij(r, r ′) = wij(|r − r ′|)). Typical shapes include
Gaussian functions or ‘‘Mexican hats’’. Here we allow for more
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