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a b s t r a c t

A simple, efficient algorithm is proposed for estimating the prediction error covariance matrix which
plays the key role for successful state estimation in very high dimensional systems. The main results are
obtained by introducing the hypothesis on the separability of vertical and horizontal structure of the error
covariance matrix and its parameterization. A new parameter optimization problem is formulated which
is closely related to the Nearest Kronecker Problem (NKP). This allows to estimate optimally the unknown
parameters of the structured parametrized ECM as well as to approach numerically the solution of the
traditional NKP in a simple and efficient way. The algorithm for the state estimation will be detailed.
The results from experiments on parameter and state estimation problems, for both moderate and high
dimensional numerical models, demonstrate a high effectiveness of the proposed filtering approach.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Partial Differential Equations are used practically in all scientific
areas, from financial markets to mathematical biology — not to
say on the well-known domains like quantummechanics, electro-
dynamics, oceanography and meteorology etc. As a mathematical
model is only a simplification or abstraction of a (complex) real
world, the measurements (observations) constitute the most im-
portant source of information which should be used promptly in
order to improve the model solution for practical problems. This
task can be excellently accomplished by filtering algorithms.

The difficulties encountered in the design of an optimal filter are
numerous. These concern system nonlinearities, uncertainties in
specification of system parameters and noise statistics etc. But the
most insurmountable difficulty in application of optimal filtering
algorithms lies on very high dimension of the system state. By the
very dimensional system we mean a system whose state dimen-
sion is of order 106–107. For example, a typical dimension of the 2d
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image vector is 104–105. As for the resulting systemstate of oceanic
numerical models, its dimension is of order 106–107.

One of the most advantages of the Kalman filter (KF) (Kalman,
1960) is that it allows, under mild conditions, to produce the best
estimate for the system state alongwith providing error covariance
matrices (ECM) of the filtered and prediction errors (PE) during the
estimation process. However, for very high dimensional systems,
the KF will fail to be applied simply due to the fact that it is
impossible to handle and store the ECM with 1012–1014 elements
in the most modern and powerful computers at the present (and
at least in the near future).

Firstmention that, covariancematrices of high dimension play a
fundamental role in the analysis ofmultivariate data collected from
a variety of fields like business and economics, health care, engi-
neering etc. Formally, we are interested in the question of how to
approximate the actual covariance matrix on the basis of a sample
of the multivariate distribution in high-dimensional settings (Bai
& Shi, 2011). The two major difficulties in estimation of the ECM
are high dimensionality and positive-definiteness (Pourahmadi,
2013). High dimensional covariance estimation focuses on the
methodologies based on shrinkage, banding, tapering, threshold-
ing, penalized likelihood etc. (Pourahmadi, 2013; Touloumis, 2015)

This paper addresses the problem of how one canwell estimate,
and at a low cost, the ECM of high dimension which constitutes
an essential element in the design of a filter for data assimilation
problems in geophysical systems (DA-Geos). Various approaches
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have been pursued to overcome the difficulties in estimating high
dimensional ECMs. This includes methods without specification
of ECM like nudging procedure in which a relaxation term is
added to the equations of the model to force the observations to
the model (Auroux & Blum, 2008) or dynamically based method
(Cooper & Haines, 1996) which projects altimeter surface height
data in the vertical by lifting or lowering water columns. In the
multivariate optimal interpolation (Srinivasan et al., 1999) covari-
ances are expressed as a product of the correlation matrix and a
diagonal matrix with variances at the diagonal. The correlations
are further separated into horizontal and vertical components.
All scalar auto correlations between values at locations separated
by scaled horizontal distances, and scaled vertical distances, are
modeled as products of (Second Order) Auto Regressive functions.
Background variances are computed from a time series of differ-
ences of samples of system state and their average generated in a
free running (Srinivasan et al., 1999; Stein, 1999).

The more advanced methods are developed in the form of
variational methods (Talagrand & Courtier, 1987) with the ECM
specified a priori on the basis of physical consideration or sim-
ulation. For example, in meteorology one widely used and very
crude PE-ECM (Prediction Error ECM) is estimated using the dif-
ference between a 48 hours (h) and 24 h forecasts valid at the
same time as a proxy for 6 h forecasts (Parrish & Derber, 1992).
Another method is based on producing an ensemble of forecasts
by integration of different filtered estimates perturbed by noisy
observations (Houtekamer&Mitchell, 1998). The balance operator
method assumes that the most obvious correlation in the PE is
the balance between mass errors and wind errors (Derber &
Bouttier, 1999). As to oceanic assimilation, in Oke, Brassington, and
Griffin et al. (2008) deviations of the state about 3 month running
average are considered as a proxy for forecast error. In this context,
we mention a fast minimum norm filtering algorithm in Feng, Ma,
Fu, and Yang (2015) which is proposed to overcome the difficulty
in the specification of the process and measurement noises and
it can be considered as a successive application of the variational
method (Talagrand & Courtier, 1987). For more details on physical
consideration, see Gaspari, Cohn, Guo, and Pawson (2006).

The idea on an adaptive filter (AF) in Hoang, DeMey, Talagrand,
and Baraille (1997) is closely related to Dullerud and Paganini
(2000) and Ge, Yang, Dai, Jiao, and Lee (2009) on a robust adaptive
control. It is supposed hence to design an AF in such a way that the
overall filtering systemshould be stable in the presence of bounded
parameter uncertainties of the filter’s gain with corresponding
ECMs. Anoptimal filter is next foundby adjusting theparameters of
stabilizing gain to minimize the PE of the system outputs. Here the
parameters vary in the intervals of admissible values guaranteeing
a filter stability. This will prevent the filter to be divergent.

Recently, one class of filters known as ensemble based filters
is widely used for DA-GeoS. This class includes different filters
like ensemble KF (Evensen, 2007), ensemble square-root KF (Fur-
rer & Bengtsson, 2007), singular evolutive extended KF (Pham,
Verron, & Roubaud, 1998) etc. where the PE-ECM is replaced by
a sample low-rank approximation which evolves in time during
data assimilation according to the KF formalism. All such filters
can be considered as belonging to the class of Sequential Monte
Carlo methods, also known as particle filters (Doucet & Godsill,
2000). One of the disadvantages of the EnBFs is that for high
dimensional systems, as the sample size is too small compared to
the large dimension of the system state, the empirical estimators
of covariance and correlation are very unstable. The estimation
procedure, developed in this paper, is aimed at overcoming the
difficulties related to considerable variability in the state estimate,
primarily through prior and posterior sample covariance matrices
due to rank deficiency. The structure of covariance proposed in
multivariate optimal interpolation (Srinivasan et al., 1999) with

priori specified parameters can be considered as a particular case
of the present method. Comparing with the classical shrinkage
technique where a priori specification of a target diagonal matrix
is used, here the target matrix is estimated by fitting the sam-
ple covariance with a matrix of given Separation of Vertical and
Horizontal Structures (SeVHS). For a review of data assimilation
methods, see Reichle (2008).

The paper is organized as follows. In Section 2 a stabilizing
structure of the filter gain is described based on Hoang, Baraille,
and Talagrand (2009). Section 3 outlines the sampling procedure
for simulating PE samples developed in Hoang, Baraille, and Tala-
grand (2001). The hypothesis on separation of vertical and hori-
zontal structure for the ECM is introduced in Section 4. Mention
that such separability of the vertical and horizontal structure is a
widely used approach to the modeling of the ECM for meteoro-
logical and oceanic assimilation (Daley, 1991; Furrer & Bengtsson,
2007; Srinivasan et al., 1999). The parameter estimation problem
is formulated here along with the algorithms for estimating the
unknown parameters. It will be shown that under certain condi-
tions the SeVHS of the ECM will imply the SeVHS for the filter
gain (Theorem 5.1 and Corollary 5.1). The proof of convergence
of the estimation procedure based on an ensemble of samples for
ECM will be given. Simplicity and efficiency of the procedure for
estimating the ECM are verified in Section 6. Section 7 is devoted
to the experiment on assimilation of simulated data into the high
dimensional ocean Miami Isopycnic Coordinate Ocean Model.

2. Structure of prediction error covariance matrix

2.1. Filter structure

Consider a standard filtering problem for linear time-invariant
system

x(t + 1) = Φx(t) + w(t), t = 0, 1, 2, . . . ,

z(t + 1) = Hx(t + 1) + ϵ(t + 1), t = 0, 1, 2, . . . (1)

here x(t) is the n-dimensional system state at the t assimilation in-
stant, Φ is the (nxn) fundamental matrix, z(t) is the p-dimensional
observation vector, H is the (pxn) observation matrix, w, ϵ are the
model and observation noises. We assume w(t), ϵ(t) are uncorre-
lated sequences of zeromean and time-invariant covarianceQ and
R respectively. Mention that in the DA-Geos, the system (1) is a
state-space representation of the numerical model derived from a
set of equations discretized at some spatial grid.

The idea on an AF is to introduce first a non-adaptive fil-
ter (Hoang et al., 1997)

x̂(t + 1) = x̂(t + 1/t) + Kζ (t + 1), (2)

x̂(t+1/t) = Φ x̂(t), ζ (t+1) = z(t+1)−Hx̂(t+1/t) is the innovation
vector, x̂(t + 1) is the filtered (or analysis) estimate, x̂(t + 1/t) is
the prediction for x(t + 1). In (2) the gain K := K (θ ) is assumed
to be given a priori and parametrized by some vector of unknown
parameters θ . The AF is obtained by tuning θ to minimize the PE of
the system output.

2.2. Structure of filter gain

Different parametrized stabilizing structures of K are obtained
in Hoang et al. (2001). The AF is obtained by

J[θ ] = E[∥ζ (t)∥2
] → min θ, (3)

where E(.) denotes the mathematical expectation.
For example, one of the possible stabilizing gain structures is

given by

K = MHT
[HMHT

+ R]−1,M = PrMePT
r , (4)
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