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a b s t r a c t

We considermulti-input single-output (MISO) fractional systems of commensurate fractional orderswith
different input or output delays. We derive explicit expressions of left and right coprime factorizations
overH∞ and of the associated Bézout factors of the transfer matrix of the systems. These factors allow the
construction of the Youla–Kučera parametrization of the set of stabilizing controllers which guarantee
the internal stability of the closed-loop systems.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Fractional systems are systems described by differential equa-
tions involving non-integer order derivatives and/or integrals.
Consequently, in the frequency domain, their transfer functions
contain non-integer powers of the Laplace variable s. This kind
of models has become more popular in many fields in the past
two decades since it provides a better fit to data being then more
succinct than a standard model. Refer, for example, to Miller
and Ross (1993) for basic backgrounds on fractional calculus and
to Freeborn (2013) and Sabatier, Agrawal, and Machado (2007) for
its recent applications on modeling.

Delays are encountered almost everywhere due, for example,
to distance of transmission and it is well-known that they have
important effects on the stability of the systems (Richard, 2003).

While integer-order systems with delays have been intensively
studied (Richard, 2003), the literature on fractional systems with
delays is still quite small. Particularly, the stabilization problem
of fractional systems with delays has rarely been addressed. Some
available studies are classical (Özbay, Bonnet, & Fioravanti, 2012)
and fractional PID controller design (Hamamci, 2007), fractional
sliding mode control (Si-Ammour, Djennoune, & Bettayeb, 2009),
factorization approach to control synthesis (Bonnet & Partington,
2002, 2007).

✩ The material in this paper was partially presented at the 20th International
Symposium on Mathematical Theory of Networks and Systems, July 9–13, 2012,
Melbourne, Australia and at the 1st IFACWorkshop on Control of Systems Modeled
by Partial Differential Equations, September 25–27, 2013, Paris, France. This paper
was recommended for publication in revised form by Associate Editor Hitay Ozbay
under the direction of Editor Miroslav Krstic.

E-mail addresses: nguyenlehavy@gmail.com (L.H.V. Nguyen),
catherine.bonnet@inria.fr (C. Bonnet).

In the framework of fractional representation approach to syn-
thesis problems (Vidyasagar, 1985), SISO fractional delay sys-
tems was considered in Bonnet and Partington (2002, 2007) and
coprime factorizations together with the corresponding Bézout
factors of the transfer function of these systems have been de-
rived. In Curtain, Weiss, and Weiss (1996), coprime factors were
presented for a large class of MIMO infinite-dimensional systems
which include delay systems. The factors were determined from
a state-space realization of the (regular) system which was given
in terms of the semigroup of the system. Such realizations are not
much considered for fractional systems.

For the particular class of MIMO (integer-order) systems with
I/Odelays, the problemof parametrization of stabilizing controllers
was solved in Mirkin and Raskin (1999) and Moelja and Meinsma
(2003). The ideawas to reduce the problem to an equivalent finite-
dimensional stabilization problem by involving an unstable finite-
dimensional system and a stable infinite-dimensional system (FIR
filter). In Mondié and Loiseau (2004), a procedure to compute right
coprime factorizations over a Bézout domain was proposed for
spectrally controllable MIMO (integer-order) systems with input
delays. For MISO structure, a class of (integer-order) systems with
multiple transmission delays was studied in Bonnet and Part-
ington (2004) and coprime factorizations and associated Bézout
factors over H∞ were derived.

In this paper, we are interested in the stabilization problem
of MISO fractional systems with different I/O delays which are
not necessarily commensurate. This MISO structure appeared, for
example, in communication systems (Quet, Ataşlar, İftar, Özbay,
Kalyanaraman, & Kang, 2002). We would like to obtain the set
of all stabilizing controllers by determining a doubly coprime
factorization over H∞ of the transfer matrix and the associated
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Bézout factors, which allow the construction of the Youla–Kučera
parametrization (Vidyasagar, 1985). As in the finite-dimensional
case, the Youla–Kučera parametrization gives the set of all H∞-
stabilizing controllers in terms of one free parameter. Note that
in Quadrat (2006), a parametrization of the set of all stabilizing
controllers is given in terms of two free parameters for MIMO
systems once we already know a particular stabilizing controller.
Our strategy here is to work directly on the Bézout identity in
order to get explicit expressions of Bézout factors in terms of the
matrix transfer function. Such explicit expressions could not be
easily derived in Mirkin and Raskin (1999), Moelja and Meinsma
(2003) andMondié and Loiseau (2004) even in the case of standard
delay systems. We hope that the explicit form will facilitate the
use of these factors in controllers design while the use of the
frequency domain representation of the systems agrees well with
the modeling practice of fractional systems (Sabatier et al., 2007).

The paper is organized as follows. In Section 2, the class of
systems of interest and some background are presented. The re-
sults are stated in Sections 3 and 4. We give in Section 3 explicit
expressions of left coprime factorizations and associated Bézout
factors overH∞ of the transfer function of the systems under study.
Right coprime factorizations and right Bézout factors are given in
Section 4 for a large subclass of the class of systems considered.
Examples are provided to illustrate the results. Finally, Section 5
gives conclusions and perspectives.

2. A class of MISO fractional time-delay systems

We consider systems described by transfermatrices of the form

G(s) =
[
e−sh1R1(sα), . . . , e−shnRn(sα)

]
, (1)

where 0 ≤ hk ∈ R for k = 1, . . . , n are the delays; α ∈ R, 0 <
α < 1; Rk(sα) = q̃k(sα)/̃pk(sα), where p̃k and q̃k are polynomials of
integer degree in sα , p̃k(sα) and q̃k(sα) have no common roots, and
deg p̃k ≥ deg q̃k for k = 1, . . . , n; dk is the degree in sα of p̃k; s is
in the principle branch C\R−, that is arg(s) ∈ (−π, π ), in order to
guarantee a unique value of the transfer function involving sα with
α ∈ (0, 1).

Some notations used are C+ = {s ∈ C | Re(s) > 0}, Z+ = {p ∈

Z | p > 0}, Z+ = {p ∈ Z | p ≥ 0}.
We are interested in H∞-stability, i.e. a SISO system is stable

if its transfer function K (s) belongs to the H∞ space of analytic
and bounded functions in C+ with ∥K∥H∞

= sups∈C+
|K (s)|. Let us

denoteM(H∞) the set of matrices whose components are in H∞.
The following notion of coprimeness is considered.
A system G is said to have a right coprime factorization (r.c.f.)

(N,M) over H∞ if G = NM−1, detM ̸= 0, N ,M ∈ M(H∞) and there
exist X , Y ∈ M(H∞) such that XM + YN = I . Then X , Y are called
right Bézout factors.

A system G is said to have a left coprime factorization (l.c.f.)
(M̃, Ñ) over H∞ if G = M̃−1Ñ , det M̃ ̸= 0, M̃ , Ñ ∈ M(H∞) and
there exist X̃ , Ỹ ∈ M(H∞) such that M̃X̃ + ÑỸ = I . Then X̃ , Ỹ are
called left Bézout factors.

For M̃ , Ñ ∈ M(H∞), there exist X̃ , Ỹ ∈ M(H∞) such that
M̃X̃ + ÑỸ = I if and only if infs∈C+

σm([M̃, Ñ]
T ) > 0, where σm(·) is

the smallest singular value of a matrix (Vidyasagar, 1985, Lemma
8.1.13 and Example 8.1.15).

If G has an r.c.f. (N,M) and an l.c.f. (M̃, Ñ), then the set of all
controllers guaranteeing the internal stability of the closed-loop
system is given by the Youla–Kučera parametrization

C(G) = {(X − RÑ)−1(Y + RM̃) | R ∈ M(H∞), det(X − RÑ) ̸= 0}

= {(̃Y + MR)(̃X − NR)−1
| R ∈ M(H∞), det(̃X − NR) ̸= 0},

where X , Y and X̃ , Ỹ are respectively the corresponding right and
left Bézout factors (Vidyasagar, 1985). For R = 0, we obtain two
particular stabilizing controllers C = X−1Y and C = Ỹ X̃−1.

Poles (resp. roots) in the closed right half-planeC+ are referred
to as unstable poles (resp. roots).

The following notations will be of intense use later.
Denote p(sα) the lowest common denominator of Rk(sα) for k =

1, . . . , n; d the degree in sα of p(sα). Then rational transfer functions
Rk(sα) can be rewritten as

Rk(sα) =
qk(sα)
p(sα)

,

where qk are polynomials in sα .
We can decompose

p(sα) = (sα)m0

(
N∏
i=1

(sα − bi)mi

)⎛⎝ N ′∏
j=1

(sα − cj)
m′

j

⎞⎠ ,

where bi ∈ D := {σ ∈ C\{0} | − πα/2 ≤ Arg(σ ) ≤ πα/2};
cj ∈ C\{D ∪ {0}}; m0 ∈ Z+, mi, m′

j ∈ Z+ for i = 1, . . . ,N and
j = 1, . . . ,N ′. Hence si = b1/αi are the non-zero unstable roots in s
of p(sα).

Similarly, we write

p̃k(sα) = (sα)m0k

(
N∏
i=1

(sα − bi)mik

)⎛⎝ N ′∏
j=1

(sα − cj)
m′

jk

⎞⎠ ,

where m0k, mik, m′

jk ∈ Z+ for i = 1, . . . ,N , j = 1, . . . ,N ′ and
k = 1, . . . , n. It is obvious thatm0k ≤ m0, mik ≤ mi, andm′

jk ≤ m′

j .

3. Left coprime factorizations and Bézout factors

In this section, we present l.c.f.’s and Bézout factors for the
transfer matrix (1).

3.1. Left coprime factorizations

Due to the dimension of the transfer matrix, finding an l.c.f. is
straightforward. The next proposition was presented in Nguyen
and Bonnet (2012) and is recalled here together with its proof for
the paper to be self-contained.

Proposition 1 (Nguyen and Bonnet, 2012). Let G(s) be given by (1).
Then (M̃(s), Ñ(s)), where

M̃(s) =
p(sα)

(sα + 1)d
,

Ñ(s) =
1

(sα + 1)d
[
e−sh1q1(sα), . . . , e−shnqn(sα)

]
,

(2)

is an l.c.f. over H∞ of G(s).

Proof. It is obvious that M̃(s)−1Ñ(s) = G(s).
We see that M̃(s) ∈ H∞. Also, each component of Ñ(s) is in H∞,

and then Ñ(s) ∈ M(H∞).
For all roots σ of p(sα), there exists at least one 1 ≤ k ≤ n such

that qk(σ ) ̸= 0. Thus infs∈C+
(
∑n

k=1|Ñk| + |M̃|) > 0 which ensures
that (M̃, Ñ) is an l.c.f. over H∞ of G.

3.2. Bézout factors

Now we propose left Bézout factors corresponding to the l.c.f.
obtained above. From the left Bézout identity, we derive that X̃ =

M̃−1(1 − ÑỸ ). The idea is to choose Ỹ ∈ M(H∞) such that X̃ ∈ H∞.
To achieve that, we interpolate (1 − ÑỸ ) at unstable zeros of M̃ .

For some simple classes of systems (1), Bézout factors were
derived in Nguyen and Bonnet (2012). In this paper, we consider
the most general case of systems (1) where techniques devel-
oped in Bonnet and Partington (2004) and Nguyen and Bonnet
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