
Automatica 83 (2017) 20–27

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

On optimization of stochastic max–min-plus-scaling systems—An
approximation approach✩

Samira S. Farahani, Ton van den Boom, Bart De Schutter
Delft Center for Systems and Control, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands

a r t i c l e i n f o

Article history:
Received 22 September 2014
Received in revised form 30 January 2017
Accepted 18 April 2017
Available online 2 June 2017

Keywords:
Discrete event systems
Optimization
Max–min-plus-scaling systems
Stochastic disturbance
Moments

a b s t r a c t

A large class of discrete-event and hybrid systems can be described by a max–min-plus-scaling (MMPS)
model, i.e., a model in which the main operations are maximization, minimization, addition, and scalar
multiplication. Accordingly, optimization of MMPS systems appears in different problems defined for
discrete-event and hybrid systems. For a stochastic MMPS system, this optimization problem is compu-
tationally highly demanding as often numerical integration has to be used to compute the objective func-
tion. The aim of this paper is to decrease such computational complexity by applying an approximation
method that is based on the moments of a random variable and that can be computed analytically.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Stochastic max–min-plus-scaling (MMPS) systems construct a
special class of stochastic discrete-event and hybrid systems, in
which processing times and/or transportation times are stochastic
quantities; in practice stochastic fluctuations of these times can,
e.g., be caused by machine failure or depreciation (Olsder, Resing,
de Vries, Keane, and Hooghiemstra, 1990). The system dynamics
of an MMPS system are defined by MMPS expressions, i.e., ex-
pressions constructed using the operations maximization, mini-
mization, addition, and multiplication by a scalar. In Necoara, De
Schutter, van den Boom, andHellendoorn (2008) it was shown that
the class of MMPS systems encompasses other classes of discrete-
event systems such as max-plus linear systems. Furthermore, it
has been shown in Gorokhovik and Zorko (1994), Heemels, De
Schutter, and Bemporad (2001), Ovchinnikov (2002) that MMPS
systems are equivalent to a particular class of hybrid systems,
namely continuous piecewise affine (PWA) systems.

In optimization problems for stochastic MMPS or continuous
PWA systems, the objective function is often defined as the ex-
pected value of an MMPS or a continuous PWA function. Since,
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in general, there are no analytic expressions for such an expected
value, the computation of the objective function in principle in-
volves numerical integration, which is computationally complex
and very time consuming. The aim of this paper is to develop
an approximation method to compute the expected value of a
stochasticMMPS or continuous PWA functionwith focus on reduc-
ing the computational complexity and the computation time. This
approximation method is an extension of the method presented
in Farahani, van den Boom, van derWeide, and De Schutter (2016),
which is inspired by the relation between different types of vector
norms, namely the p-normand the∞-normandwhich in Farahani
et al. (2016) has been only applied to max-plus linear systems
with normally distributed disturbances. In Farahani et al. (2011),
the method proposed in Farahani et al. (2016) has been applied
in the context of model predictive control for stochastic MMPS
systems and in Farahani, van den Boom, and De Schutter(2014),
the approximation method has been extended to a more general
class of distributions and an upper bound for the error of this
method has been introduced.

The main contributions of the current paper are as follows:
(1) proposing a solution for the optimization problem of stochastic
MMPS systems using an approximation method that is based on
moment-generating functions and is applicable to any distribution
with finite moments; (2) discussing the error of the proposed
approximation method and presenting finite upper bounds for the
error caused by this approximation method. In the discussion of
the general optimization problem of stochastic MMPS systems,
we introduce two main applications of such systems, namely, the
filtering problem and the reference tracking problem. To solve
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the optimization problem, we use the approximation method pro-
posed in Farahani et al. (2014), which provides an upper bound for
the expected value of a stochastic MMPS function and which can
be used as a replacement of the objective function in the optimiza-
tion problem. In the error discussion, besides presenting an upper
bound, we show how different parameters in the approximation
function may influence the error bounds.

2. Max–min-plus-scaling systems

A large class of discrete-event and hybrid systems can be de-
scribed by amax–min-plus-scaling (MMPS)model.1 Thesemodels
are described using MMPS functions.

Definition 1 (De Schutter and van den Boom, 2002). A function
g : Rn

→ R is a scalar-valued MMPS function of the variables
x1, . . . , xn if there exist an index i ∈ {1, . . . , n} and scalarsα, β ∈ R
such that

g(x) = xi|α|max(gk(x), gl(x))|min(gk(x), gl(x))|
gk(x) + gl(x)|βgk(x),

where | stands for ‘‘or’’ and gk and gl are scalar-valued MMPS
functions.

Accordingly, for a vector-valuedMMPS function g , each compo-
nent of g is an MMPS function of the above form.

A state space representation of a stochastic MMPS system, in
which noise and modeling errors are present, can be described as

x(k) = Mx(x(k − 1), u(k), ω(k)) (1)
y(k) = My(x(k), u(k), ω(k)) (2)

where Mx, My are MMPS functions, x(k) ∈ Rn is the system
state, u(k) ∈ Rm is the system input, and y(k) ∈ Rs is the
system output at time or event step k. We present both noise and
modeling errors in a single framework using a vectorω(k), which is
a vector of independent random variables with a given probability
distribution.

The class of MMPS systems is equivalent to a particular class of
hybrid systems, namely the class of continuous PWA systems (see
Bemporad, Ferrari-Trecate, & Morari, 2000; Chua & Deng, 1988;
Johansson, 2003; Leenaerts & van Bokhoven, 1998 for more details
on PWA systems).

Proposition 2 (Gorokhovik & Zorko, 1994; Ovchinnikov, 2002). Any
MMPS function can be written as a continuous PWA function and vice
versa.

Moreover, any MMPS function can be written in a canonical
form, as expressed in the following proposition.

Proposition 3 (De Schutter and van den Boom, 2004). Any scalar-
valuedMMPS function g can be rewritten into themin–max canonical
form g(x) = mini=1,...,Kmaxj∈ni (α

T
ij x + βij) or into the max–min

canonical form g(x) = maxi=1,...,Lminj∈mi (γ
T
ij x+δij) for some integers

K , L, non-empty subsets ni and mi of the index sets {1, 2, . . . , K } and
{1, 2 . . . , L} respectively, real numbers βij, δij, and vectors αij, γij.

Furthermore, the following proposition from Farahani et al.
(2011, Corollary 5) shows that an MMPS function can be written
as a difference of two convex functions.

1 Note that generalized Lindley recursion models Borovkov (1984) and Whitt
(1990) are special case of MMPS systems.

Proposition 4. The function g(x) = maxi=1,...,Lminj=1,...,mi lij(x)
where lij(x) = γ T

ij x + ξij is an affine function in x, can be written
as g(x) = s(x) − r(x) where s(·) and r(·) are both convex functions
defined as follows

r(x) = −

L∑
i=1

min
j=1,...,mi

lij(x) =

L∑
i=1

max
j=1,...,mi

(−lij(x)) (3)

s(x) = r(x) + max
i=1,...,L

min
j=1,...,mi

lij(x)

= max
l=1,...,L

max
(j1,...,ji−1,ji+1,...,jL)∈C(m1,...,mi−1,mi+1,...,mL)

L∑
i′=1
i′ ̸=i

(−li′ji′ (x)). (4)

The last equality is obtained using the distributive property of addition
w.r.t. maximization in which for some integers L,m1, . . . ,mL, the set
C(m1, . . . ,mL) is defined as C(m1, . . . ,mL) = {(q1, . . . , qL)|qk ∈

{1, 2, . . . ,mk}, k = 1, . . . , L}.

3. Optimization of stochastic MMPS systems

We consider minimization of a stochastic MMPS or continuous
PWA function with a random vector ω that has a given probability
density function. The class of minimization problems under con-
sideration2 can be formulated as
min
u∈Rn

Eω[F (u, ω)]

s.t. G(u) ≤ 0
(5)

where Eω[·] is the expected value operator with respect to ω, F is
a scalar MMPS function of u and ω, and G is a convex function of u
specifying the input constraints. In order to solve the optimization
problem (5), we need to determine the expected value of anMMPS
function. One possible approach is numerical integration using the
available methods. However, numerical integration is in general
both cumbersome and time-consuming, and it becomes evenmore
complicated as the probability density function ofω becomesmore
complex. Therefore, it is desired to find an alternative approach
that is more efficient than numerical integration.

First, we apply Proposition 4 to rewrite the objective function
J̃(u) = Eω[F (u, ω)] as a difference of two convex functions:

J̃(u) = Eω[F (u, ω)] = Eω[s(u, ω) − r(u, ω)]
= Eω[s(u, ω)] − Eω[r(u, ω)] (6)

where s(·, ·) and r(·, ·) are defined as given in Proposition 4, and
where the last equality stems from the fact that E[·] is a linear
operator. Note that J̃(u) in (6) results in a non-convex optimization
problem. To solve the optimization problem (5), it is only left to
compute the expected values in (6). Note that s(u, ω) and r(u, ω)
both consist of a maximization of set of affine terms. Therefore,
our aim is to find an efficientway to compute the following general
expression:

E[ max
j=1,...,n

(ξj + γ T
j ω)] (7)

where ξj ∈ R, γj ∈ Rnω is a scaling factor, and ω ∈ Rnω is a
vector of independent random variables with a given probability
distribution. Note that by assumption ξj = αj + βju, for αj ∈ R and
βj ∈ Rm but that the dependence of ξj on u is dropped in the rest of
the paper for brevity. Next, we present two popular cases in which
the optimization of stochastic MMPS functions appears.

2 This class consists of one-stage horizon and receding horizon (model predictive
control) optimization problems and the class of control problems with static open-
loop inputs.
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