
Automatica 83 (2017) 65–72

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Maximum delay bounds of linear systems under delay independent
truncated predictor feedback✩

Yusheng Wei, Zongli Lin
Charles L. Brown Department of Electrical and Computer Engineering, University of Virginia, P.O. Box 400743, Charlottesville, VA 22904-4743, USA

a r t i c l e i n f o

Article history:
Received 16 September 2015
Received in revised form 8 April 2017
Accepted 24 April 2017

Keywords:
Time delay
Truncated predictor feedback
Low gain feedback

a b s t r a c t

In a predictor feedback law for a linear system with input delay, the future state is predicted as the
state solution of the linear system. The zero input solution contains the transition matrix. The zero state
solution gives rise to the distributed nature of the feedback law. In a 2007 IEEE TAC paper, it is established
that, when the system is not exponentially unstable, low gain feedback can be designed such that the
predictor feedback law, with the distributed term truncated, still achieves stabilization for an arbitrarily
large delay. Furthermore, in the absence of purely imaginary poles, the transition matrix in the truncated
predictor feedback (TPF) can be safely dropped, resulting in a delay independent TPF law, which is simply
a delay independent linear state feedback. In this paper, we first construct an example to show that, in
the presence of purely imaginary poles, the linear delay independent TPF in general cannot stabilize the
system for an arbitrarily large delay. By using the Lyapunov–Krasovskii Stability Theorem, we derive
a bound on the delay under which the delay independent truncated predictor feedback law achieves
stabilization for a general system that may be exponentially unstable.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Control problems, especially, the problems of stability analy-
sis and stabilization, for time-delay systems have attracted much
attention during the past several decades. Various problems for
time-delay systems have been investigated and a great number
of results have been reported in the literature (see, Cao, Lin, &
Hu, 2002; Chen & Latchman, 1995; Fang & Lin, 2006; Fridman,
2001; Gao, Chen, & Lam, 2008; García, Aguirre, & Suárez, 2008;
Gu, Han, Luo, & Niculescu, 2001; Gu, Kharitonov, & Chen, 2003;
Krstic, 2010a,b; Lu & Huang, 2015; Mazenc, Mondie, & Francisco,
2004; Mazenc, Mondie, & Niculescu, 2003, 2004; Pepe, Jiang, &
Fridman, 2008; Sipahi, Niculescu, Abdallah, Michiels, & Gu, 2011;
Tarbouriech, Peres, Garcia, & Queinnec, 2002; Villafuerte, Mondie,
&Garrido, 2013; Zhong, 2004 and Zhong, 2005, for a small sample).

In this paper, we consider the asymptotic stabilization problem
for the following linear system with time-varying delay in the
input,{

ẋ(t) = Ax(t) + Bu(φ(t)),
x(θ ) = ψ(θ ), θ ∈ [−D, 0], (1)
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where x ∈ Rn and u ∈ Rm are state and input, respectively. The
time-varying delay function φ(t) : R+

→ R is assumed to have the
standard form of φ(t) = t − d(t), where d(t) : R+

→ R+ denotes
time-varying delay which is bounded by a finite positive constant
D, i.e., 0 ≤ d(t) ≤ D,∀t > 0. Only the information on the bound D,
but not the delay d(t) itself,will be required in the stability analysis.
We also assume that the pair (A, B) is stabilizable.

The predictor feedback is a popular control design for system (1)
that has been studied extensively and widely adopted in practice
since the classical Smith predictor method was introduced for sta-
ble linear plants in Smith (1959). Themost commonpredictor-type
controllers considered in the literature are based on the Artstein
model reduction technique (Artstein, 1982; Mayne, 1968) and the
finite spectrumassignment technique (Manitius &Olbrot, 1979). In
the presence of a constant delay d, a predictor state feedback law
takes the form of

u(t) = Fx(t + d) = FeAdx(t) + F
∫ t

t−d
eA(t−λ)Bu(λ)dλ, (2)

where the future state x(t + d) is predicted as the sum of the zero
input solution and the zero state solution of the linear system, and
F is the feedback gain matrix. We note that the zero input solution
is the product of the transition matrix and the current state. The
zero state solution involves the integration of the past input and
gives rise to the distributed nature of the feedback law. Under the
feedback law (2), the closed-loop system is a delay free system

ẋ(t) = (A + BF )x(t).
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In spite of the simple form of the closed-loop system it results in,
a predictor state feedback law is a distributed control law that is
difficult to implement.

In a 2007 paper (Lin & Fang, 2007), it is shown that, when the
open loop system is not exponentially unstable, a parameterized
feedback gain matrix F (γ ) can be designed by the low gain feed-
back design technique (Lin, 1998) such that the finite dimensional
feedback law u(t) = F (γ )eAdx(t), that is the predictor feedback
law (2)with the integral term truncated, would still asymptotically
stabilize system (1) for an arbitrarily large delay d as long as the low
gain parameter γ is tuned small enough. In the absence of purely
imaginary poles, the transition matrix in the truncated predictor
feedback (TPF) law can be dropped and the feedback law further
simplifies to a delay independent linear state feedback law u(t) =

F (γ )x(t). Such a linear feedback law, parameterized in the low gain
parameter, can be referred to as the delay independent truncated
feedback law. A simple example was also constructed in Lin and
Fang (2007) to show that such a result would not be true if the
open-loop system is exponentially unstable.

The truncated predictor feedback design originally proposed
in Lin and Fang (2007) uses the eigenstructure assignment based
low gain feedback design method. The design was significantly
simplified in Zhou, Lin, and Duan (2012), where a parametric Lya-
punov equation based low gain feedback design was adopted. The
parametric Lyapunov equation based truncated predictor feedback
design was extended to general, possibly exponentially unstable,
systems in Yoon and Lin (2013), where it is shown that, for
the stability of the closed-loop system, the maximum allowable
time-delay in the input is inversely proportional to the sum of
the unstable poles of the open loop system. Among the different
versions of truncated predictor feedback laws, the delay inde-
pendent truncated predictor feedback does not require the exact
knowledge of the delay and is thus robust to the uncertainty in,
the delay. However, it was only established for systems that are
not exponentially unstable and in the absence of purely imaginary
poles.

In this paper, we will examine the properties of such delay
independent truncated predictor feedback for general systems,
whichmay have purely imaginary or exponentially unstable poles.
In particular, wewill first construct an example to show that, in the
presence of purely imaginary poles, the linear delay independent
truncated predictor feedback in general does not have the ability
to stabilize the system for an arbitrarily large delay. We then
derive, by applying the Lyapunov–Krasovskii Stability Theorem, a
bound on the delay under which the delay independent truncated
predictor feedback law achieves stabilization for a general system.
The expression of this bound indicates that, when all the closed
right-half plane poles are at the origin, stabilization of the system
would be achieved for an arbitrarily large delay as long as the low
gain parameter is chosen to be sufficiently small. This observation
coincides with the results in both Lin and Fang (2007) and Zhou,
Lin, and Duan (2009). Moreover, it will be shown that, for an
arbitrarily given delay, the upper bound of the low gain parameter
that guarantees stability is less conservative than that of result
in Zhou, Lin, & Duan (2009).

The remainder of this paper is organized as follows. Section 2
gives the problem statement and presents some necessary pre-
liminaries for establishing our main results. In Section 3, we first
construct an example to show that, in the presence of purely
imaginary poles, andwith no poles in the open right-half plane, the
delay independent truncated predictor feedback fails to stabilize
the system when the delay is sufficiently large. Then, through
Lyapunov–Krasovskii stability analysis, a bound is derived on the
delay under which the delay independent truncated predictor
feedback law still achieves stabilization. Section 4 contains numer-
ical examples which illustrate the theoretical results derived in the
paper. Section 5 concludes the paper.

2. Problem statement and preliminaries

The truncated predictor feedback law as constructed in Lin and
Fang (2007) is given as

u(t) = F (γ )eAdx(t), γ > 0, (3)

where F (γ ) is a parameterized feedback gain constructed by the
eigenstructure assignment based low gain feedback design tech-
nique (Lin, 1998). It was established in Lin and Fang (2007) that,
when all the eigenvalues of A are in the closed left-half plane,
the truncated predictor feedback law (3) would asymptotically
stabilize system (1) for an arbitrarily large delay d as long as the
low gain parameter γ is tuned small enough. It is further shown
in Lin and Fang (2007) that in the absence of purely imaginary
poles, the system can be stabilized for an arbitrarily large delay by
linear delay independent truncated predictor feedback law with
the tuning parameter γ ,

u(t) = F (γ )x(t), γ > 0. (4)

Alternative construction of the truncated predictor feedback law
was later given in Zhou, Lin, & Duan (2012) by utilizing the
Lyapunov equation based low gain design technique (Zhou, Duan,
& Lin, 2008). That is, for a controllable pair (A, B), the parameterized
feedback gain matrix F (γ ) in (3) is constructed as,

F (γ ) = −BTP(γ ), (5)

where the positive definite matrix P(γ ) is the solution to the
following parametric algebraic Riccati equation,

ATP + PA − PBBTP = −γ P,

with

γ > −2min{Re(λ(A))}. (6)

Note that P(γ ) can be obtained from P(γ ) = W−1(γ ), whereW (γ )
is the unique positive definite solution to the Lyapunov equation

W
(
A +

γ

2
I
)

T
+

(
A +

γ

2
I
)
W = BBT. (7)

More recently, the Lyapunov equation based truncated predic-
tor feedback lawhas been extended to general systems thatmay be
exponentially unstable (Yoon & Lin, 2013), where it is shown that,
for the stability of the closed-loop system, themaximumallowable
time-delay in the input is inversely proportional to the sum of the
unstable poles in the open loop system.

In this paper, we will first show that, when system (1) is not
exponentially unstable but has purely imaginary poles, the delay
independent truncated predictor feedback law (4) is in general not
able to achieve asymptotic stabilization for a large enough delay.
We will then derive bound on the delay under which the delay
independent truncated predictor feedback law would achieve sta-
bilization for a general system that may be exponentially unstable.

To achieve our objectives, we need some technical preliminar-
ies. We first recall some properties of the solution P(γ ) of the
algebraic Riccati equation (6) from Zhou, Lin, & Duan (2009). By
post-multiplying P−1(γ ) and performing trace operations on both
sides of Eq. (6), we get

tr(BTPB) = 2tr(A) + nγ . (8)

Furthermore, we can also verify that

PBBTP = P
1
2

(
P

1
2 BBTP

1
2

)
P

1
2 ≤ tr(P

1
2 BBTP

1
2 )P

= tr(BTPB)P = (2tr(A) + nγ ) P . (9)

We also have the following further properties of P(γ ).
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