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a b s t r a c t

Backstepping is one of themost popular nonlinear controller and differentiable control Lyapunov function
(CLF) design techniques. However, for asymptotic stabilization of systems defined on noncontractible
manifolds, there exists no differentiable CLF; the semiconcave CLF design problem based on the back-
stepping has not been discussed. In this paper, we propose a backstepping based controller designmethod
for asymptotic stabilization of systems defined on noncontractible manifolds. In the method, we design
a controller and a CLF on an étale space. Then, we obtain a semiconcave CLF on the original space by
the minimum projection method. The effectiveness of the proposed method is confirmed by computer
simulation.

© 2017 Published by Elsevier Ltd.

1. Introduction

Global asymptotic stabilization of systems defined on noncon-
tractiblemanifolds, such as attitude control of rigid body dynamics
or obstacle-avoidance control of mobile robots, cannot be asymp-
totically stabilized at the desired point by any continuous time-
invariant state feedback due to its topological obstructions (Bhat
& Bernstein, 2000). Moreover, continuous periodic time-varying
state feedback controllers also fail to stabilize at any desired equi-
librium point (Bernuau, Perruquetti, & Moulay, 2013). Then, it is
natural to consider a discontinuous state feedback controller.

Backstepping is one of the most popular nonlinear controller
design techniques (Khalil, 2002; Kokotović & Arcak, 2001). Ex-
tensions to nonsmooth controllers are discussed in Freeman, and
Kokotović (1996), Zhang and Shen (2013) and Zheng, Shen, He,
and Yang (2010). Further, discontinuous controllers are considered
in Kristiansen, Nicklasson, and Gravdahl (2009) and Tanner and
Kyriakopoulos (2003). For controller design on manifolds, both
discontinuous backstepping methods (Kristiansen et al., 2009;
Tanner & Kyriakopoulos, 2003) produce discontinuous Lyapunov
functions; the method cannot be recursively used.

This paper aims to develop discontinuous backstepping that
generates a continuous Lyapunov function. Specifically, we design
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a locally semiconcave Lyapunov function in this paper. The func-
tion achieves many advantages for control systems analysis (Can-
narsa & Sinestrari, 2004; Clarke, 2011; Nakamura, Tsuzuki, Fukui, &
Nakamura, 2013; Rifford, 2002), although a semiconcave function
is a nonsmooth function.

For locally semiconcave control Lyapunov function (CLF) de-
sign on manifolds, the authors proposed the minimum projection
method in Nakamura, Fukui, Nakamura, and Nishitani (2010),
Nakamura et al. (2013) and Nakamura, Yamashita, and Nishitani
(2009). The minimum projection method generates a locally semi-
concave CLF on a manifold by using a (possibly smooth) CLF on
an étale space. In this paper, we propose a novel control strategy
based on the backstepping on an étale space over a manifold and
the minimum projection method.

The paper is organized as follows. Section 2 illustrates a moti-
vating example and a problem in the previously proposedmethod.
Section 3 is devoted to the introduction of fundamental mathe-
matical backgrounds. The main results of the paper are collected
in Section 4. In Section 5, we discuss backstepping on étale spaces
to provemain theorems, and then the proofs of themain theorems
are given in Section 6. Section 7 illustrates the advantages of
the proposed method by using the motivating example. A brief
conclusion is summarized in Section 8.

2. Motivating example

We illustrate problems in the backstepping proposed in Tanner
and Kyriakopoulos (2003). Let us consider the following cascaded
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Fig. 1. Plot of V1 .

system:

ξ̇ = η (1a)
η̇ = u, (1b)

where ξ ∈ X = S1 parametrized by (−π, π] and η ∈ R are
state variables, and u ∈ R is the control input. We assume that
(0, 0) ∈ X × R is the desired equilibrium point.

Since X is noncontractible, there is no smooth CLF for subsys-
tem (1a). In contrast, as Kristiansen et al. found a locally Lipschitz
CLF for the satellite attitude control problem (Kristiansen et al.,
2009), we can easily construct one:

V1(ξ ) = −
1
2
cos ξ − cos

ξ

2
+

3
2
. (2)

We can observe that V1 is continuous but is not differentiable at
ξ = π (Fig. 1). Moreover, the following input k1(ξ ) asymptotically
stabilizes the origin of (1a):

η = k1(ξ ) = −
1
2
sin ξ −

1
2
sin

ξ

2
. (3)

Note that there is no static feedback controller that globally and
asymptotically stabilizes a single equilibrium point in the sense
of Filippov; actually, controller (3) does not satisfy condition (3)
in Tanner and Kyriakopoulos (2003).

Though (3) does not satisfy the assumptions of Theorem 5
in Tanner, and Kyriakopoulos (2003), we can design the following
feedback controller for system (1a)–(1b) by Tanner’s backstepping
with the virtual input (3) (Tanner & Kyriakopoulos, 2003).

u = ζ (ξ, η)

+

(
Kz +
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1 (ξ, η)[η − k1(ξ )]
(η − k1(ξ ))2

)
[k1(ξ ) − η], (4)
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(6)

where Kz > 0 is an arbitrary constant. By the proof of Theorem 5
in Tanner and Kyriakopoulos (2003), the following function Va is
considered as a Lyapunov function:

Va = −
1
2
cos ξ − cos

ξ
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+

3
2

+

(
η +

1
2
sin ξ +

1
2
sin

ξ

2

)2

. (7)

Va is illustrated in Fig. 2. We show a computer simulation result
with respect to the initial condition (ξ (0), η(0)) = (3, 1) in Fig. 3.

Fig. 2. Discontinuous function Va .

Fig. 3. History of Tanners’ backstepping.

Note that Va is discontinuous at ξ = π , and actually, we can find
discontinuity of the time history of Va at t ≃ 0.16 in Fig. 3. This
implies that Tanner’s nonsmooth backstepping cannot be used for
asymptotic stabilization on manifolds. On the other hand, since
Kristiansens’ method heavily depends on the rigid body attitude
control, the method cannot be applied to the motivating example.

The objective of the paper is to develop a new backstepping
method that produces a continuous Lyapunov function.

3. Preliminaries

3.1. Control systems defined on differentiable manifolds

This paper considers a control system defined on a differen-
tiable manifold X . We suppose X is C r differentiable for r ∈ N ∪

{∞, ω} \ {1, 2}, specifically r ≥ 3 is assumed. Here, Cω means real
analytic. Let X denote an n-dimensional differentiable manifold,
TX a tangent bundle of X . Scalar multiplication and summation
are defined on TX (Warner, 1983).

In this paper, we consider the following control affine nonlinear
control system on X :

ẋ = f (x) +

m∑
i=1

gi(x)ui

= f (x) + g(x)u, (8)

where x ∈ X , u ∈ F(R,Rm); t ↦→ u(t) ∈ Rm, where F(R,Rm)
denotes a set of all mappings from R to Rm. Moreover, mappings
f , gi : X → TX are assumed to be C r differentiable.
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