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a b s t r a c t

The paper treats a class of optimal control problems for deterministic nonlinear discrete-time systems
with the objective of maximizing the time or total yield until prescribed constraints are violated. Such
problems are referred to as drift counteraction optimal control (DCOC) problems as the corresponding
control policy may be viewed as optimally counteracting drift imposed by disturbances or system
dynamics. We derive conditions for the existence of an optimal solution. The optimal control policy is
characterized by the value function and a new algorithm based on proportional feedback is presented
that obtains the value function faster than conventional dynamic programming algorithms. In addition,
an approximate dynamic programming (ADP) approach using Gaussian process regression is formulated
based on the new algorithm. Two numerical examples are reported, a time maximization problem for a
van der Pol oscillator and a satellite life extension problem.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Let xt ∈ Rn be the state vector of a dynamic system at a discrete
time instant t ∈ Z+ and π : Rn

→ U an admissible control
policy. We consider a class of exit-time problems for deterministic
nonlinear discrete-time systems, where the first exit-time of x
from a prescribed set G ⊂ Rn, given the initial state vector x0 and
control policy π , is defined as follows

τ (x0, π ) = inf
{
t ∈ Z≥0 : xt ̸∈ G|x0 ∈ G, π ∈ Π

}
, (1)

withΠ as the set of admissible control policies. The optimal control
problem is given by

J(x0, π ) =
τ (x0,π )−1∑

t=0

g(xt , ut )→ max
π∈Π

subject to xt+1 = f (xt , ut ), x0 ∈ G,

(2)

where g : G × U → R+ is the instantaneous yield and ut =

π (xt ) ∈ U ⊂ Rp is the control input vector at a time instant t . We
refer to such problems as drift counteraction optimal control (DCOC)
problems since the optimal control policy is counteracting drift
imposed by system dynamics or disturbances in order tomaximize
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J . Note that if g ≡ 1 in (2), the objective is tomaximize the first exit-
time from G. DCOC problems can be found in many engineering
applications, in particular, those where resources (fuel, energy,
component life, etc.) are finite. For example, Kolmanovsky and
Filev (2009) applied DCOC to adaptive cruise control and hybrid
electric vehicle energy management and Zidek and Kolmanovsky
(2015) used DCOC to maximize the lifetime of a satellite.

The approach in this paper to solve (2) is based on dynamic
programing (DP), where the optimal control policy is characterized
by the value function V , which is defined by

V (x) = sup
π∈Π

J(x, π ). (3)

The DCOC problem for stochastic systems was considered by Kol-
manovsky, Lezhnev, andMaizenberg (2008). They showed that the
value iteration (VI) algorithm converges to the value function if an
optimal solution exists. Zidek and Kolmanovsky (2015) applied
DCOC to deterministic systems and introduced proportional feed-
back VI to obtain the value function. Numerical examples showed
that proportional feedback VI converges to the value function
faster than conventional VI. The present paper extends signif-
icantly our previous conference paper (Zidek & Kolmanovsky,
2015). In particular, we present additional results and applications,
details of the proofs, and discussions. The main contributions are
the derivation of conditions for the existence of a solution to (2)
and the analysis of convergence of proportional feedback VI, theo-
retically proving convergence for any proportional gain between 0
and 2. Furthermore, we provide an explanation for gains different
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than 1 providing faster convergence when VI is implemented ap-
proximately. We consider a discrete-mesh-based approximation
and a Kriging-based approximate dynamic programming (ADP)
implementation and we present numerical examples which con-
firm improved convergence properties with the proper selection
of the gain differently from the ideally optimal value of 1.

Problems similar to DCOC, subject to stochastic continuous-
time systems, were treated by Bayraktar, Song, and Yang (2010),
Buckdahn and Nie (2016), Fleming and Soner (2006), Gorodet-
sky, Karaman, and Marzouk (2015), Kolmanovsky and Maizenberg
(2002) and Lions (1983b). It was shown that, under suitable as-
sumptions, the optimal control and its corresponding value func-
tion satisfy the Hamilton–Jacobi–Bellman (HJB) equation in the
viscosity sense, where the HJB equation is a second-order partial
differential equation (PDE) for the value function (Lions, 1983a).
Related problems for deterministic continuous-time systems were
treated by Barles and Perthame (1988), Blanc (1997), Cannarsa,
Pignotti, and Sinestrari (2000), Malisoff (2002) and Rungger and
Stursberg (2011). As for the stochastic case, the value function was
shown to be a weak solution of the HJB equation, which is a first
order PDE in the deterministic case.

Explicit solutions to the HJB equation only exist for some spe-
cial problems. Otherwise, a solution can only be obtained ap-
proximately using numerical methods. Therefore, as also noted
in Kolmanovsky et al. (2008), in contrast to the continuous-time
treatment of the problem and solving a PDE numerically, the for-
mulation of the problem in discrete-time appears to be computa-
tionally more tractable for determining the value function. In fact,
numerical schemes for solving the HJB equation require both a
time and state space discretization, where the VI algorithmmay be
used to solve the discretized problem (Barles & Souganidis, 1991;
Kushner & Dupuis, 2013; Rungger & Stursberg, 2011).

The structure of the paper is as follows. A characterization of the
optimal solution and existence conditions are given in Section 2.
The computation of the optimal control policy, including a Kriging-
based ADP approach, is discussed in Section 3. Section 4 presents
two numerical examples ofmaximizing the time until a van der Pol
oscillator violates constraints and of maximizing the lifetime of a
satellite in low Earth orbit (LEO). A conclusion is given in Section 5.

2. Characterization of optimal solution

Wemake the following assumption about g .

Assumption 1. There exists a real-valued ḡ > 0 such that g(x, u) ≤
ḡ for all (x, u) ∈ G× U .

Theorem 1 provides conditions under which the total yield
and the value function are bounded. It is based on the following
assumption about τ (x, π ).

Assumption 2. There exists an integer T̄ > 0 such that τ (x, π ) ≤ T̄
for all x ∈ G and π ∈ Π .

This assumption is reasonable inDCOCproblems inwhich every
trajectory will eventually violate the constraints and the objective
is either to delay this event or to maximize yield before it happens.
This is the case, for example, in applications where resources such
as fuel are limited, see Section 1, or where insufficient control
authority is available.

Theorem 1. Suppose Assumptions 1 and 2 hold. Then there exists
V̄ > 0 such that J(x, π ) ≤ V (x) ≤ V̄ for all x ∈ G and π ∈ Π .

Proof. Let x = x0 ∈ G be any given state and π ∈ Π . Using
Assumptions 1 and 2, we get

J(x, π ) =
τ (x,π )−1∑

t=0

g(xt , ut ) ≤
τ (x,π )−1∑

t=0

ḡ ≤ T̄ ḡ. (4)

This and (3) imply that V (x) ≤ V̄ = T̄ ḡ . □

The next theorem provides sufficient conditions for a control
policy to be optimal.

Theorem 2. Suppose Assumptions 1 and 2 hold and let LπV (x) =
V (x)− V (f (x, π (x))). Then π∗ ∈ Π satisfies

Lπ∗V (x) = g(x, π∗(x)), if x ∈ G,

LπV (x) ≥ g(x, π (x)), if x ∈ G, π ̸= π∗,

V (x) = 0, if x ̸∈ G,

(5)

for all x ∈ Rn and π ∈ Π if and only if π∗ maximizes J(x, π ) for all
x ∈ G. Furthermore, V (x) = J(x, π∗) and

π∗(x) ∈ Π∗(x) = argmax
u∈U

{g(x, u)+ V (f (x, u))} . (6)

Proof. Since J(x, π ) = 0 for all x ̸∈ G, V (x) = 0 for all x ̸∈ G. Now
let x = x0 ∈ G be any given state and π ∈ Π . For the first part of
the proof, assume π∗ satisfies (5). Thus, we have

J(x, π ) =
τ (x,π )−1∑

t=0

g(xt , π (xt ))

≤

τ (x,π )−1∑
t=0

LπV (xt ) = V (x),

(7)

since V (xτ (x,π )) = 0 due to xτ (x,π ) ̸∈ G. Similarly,

J(x, π∗) =
τ (x,π∗)−1∑

t=0

g(xt , π∗(xt ))

=

τ (x,π∗)−1∑
t=0

Lπ∗V (xt ) = V (x).

(8)

We can compare (7) and (8) because V is bounded by Theorem 1,
which shows that J(x, π∗) ≥ J(x, π ). It immediately follows from
(5) that π∗(x) ∈ Π∗(x) according to (6). For the second part of the
proof, assume that π∗ maximizes J(x, π ) for all x ∈ G. Then, by (3),
V (x) = J(x, π∗) for all x ∈ G. This implies

V (x) = g(x, π∗(x))+ J(f (x, π∗(x)), π∗)
= g(x, π∗(x))+ V (f (x, π∗(x))). (9)

Since V (x) is the optimal value, it follows that, for any admissible
policy π ̸= π∗,

V (x) ≥ g(x, π (x))+ J(f (x, π (x)), π∗)
= g(x, π (x))+ V (f (x, π (x))). □

(10)

Remark 1. The optimal solution π∗ to (2), if exists, may not be
unique. In case of non-uniqueness, additional criteria, for instance,
minimizing 2-norm,may be used for selecting the control from the
set of maximizers in (6).

Theorem 3. If an optimal solution to (2) exists, V is the unique
solution to (5).

Proof. Suppose π∗ ∈ Π is an optimal solution to (2). Furthermore,
suppose that, in addition to V , another function V̂ satisfies (5).
It follows from the proof of Eqs. (2) and (8) that, for all x ∈ G,
V (x) = J(x, π∗) and V̂ (x) = J(x, π∗), which implies V̂ = V . □

The existence of an optimal solution to (2) can be studied using
the set Π∗(x).

Theorem 4. An optimal solution π∗ ∈ Π to (2) exists for all x ∈ G if
and only if the set Π∗(x) defined in (6) is nonempty for all x ∈ G.
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