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a b s t r a c t

Thismanuscript addresses the output regulation problem for linear distributed parameter systems (DPSs)
with bounded input and unbounded output operators. We introduce novel methods for the design
of the output feedback and error feedback regulators. In the output feedback regulator design, the
measurements available for the regulator do not belong to the set of controlled outputs. The proposed
output feedback regulator with the injection of the measurement ym(t) and reference yr (t) can realize
both the plant and the exosystem states estimation, disturbance rejection and reference signal tracking,
simultaneously. Moreover, new design approach provides an alternative choice for seeking the output
injection gain in a traditional error feedback regulator design. The regulator parameters are easily
configured to solve the output regulation problems, and to ensure the stability of the closed-loop systems.
The results are demonstrated via computer simulation in two types of representative systems: the
parabolic partial differential equation (PDE) system and the first order hyperbolic PDE system.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

An important control problem is output regulation, i.e., to real-
ize the asymptotic tracking of given reference signals in the pres-
ence of disturbances. Under the assumption that these exogenous
signals can be generated by an exosystem, a systematic solution to
the output regulation problem can be derived. The geometric the-
ory of output regulation was first introduced in Francis (1977) for
finite-dimensional systems and then the output regulation theory
was documented and developed for lumped-parameter systems
in Knobloch, Isidori, and Flockerzi (1993) for linear systems and
in Byrnes, Priscoli, and Isidori (1997) and Isidori and Byrnes (1990)
for nonlinear systems. Essentially, there are different approaches
for solving the output regulation problem. In the first one, Davison
(1976) developed a robust controller with an exosystem, driven by
the output tracking error. The second method originates from the
work of Johnson (1971), where the controller is designed based on
an observer with an exosystem. The observer is able to estimate
the state of the plant and the exosystem.

In chemical, biochemical or/and mechanical processes, the dy-
namics of linear systems may exhibit both temporal and spatial
effects, so that the setting of the linear distributed parameter
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systems, known as infinite-dimensional systems, has to be taken
into account. Many contributions have been made to general-
ize the output regulation theory in finite-dimensional systems to
infinite-dimensional systems. In Kobayashi (1983) and Pohjo-
lainen (1982), a PI-controller was designed for stable distributed
parameter systems with constant disturbance. Later, the work
of Pohjolainen (1982) was extended to the systems with infinite-
dimensional exosystems in Hämäläinen and Pohjolainen (2000),
Immonen (2007) and Paunonen and Pohjolainen (2010) and to
well-posed systems in Rebarber andWeiss (2003). In Aksikas, Fux-
man, Forbes, andWinkin (2009), the linear–quadratic (LQ) optimal
regulatorwas introduced to realize the constant trajectory tracking
of the first order hyperbolic PDE systems.

To realize the output regulation, the geometric theory in Fran-
cis (1977) was generalized to infinite-dimensional systems with
bounded control and observation operators in Byrnes, Laukó,
Gilliam, and Shubov (2000), and was later developed by Natara-
jan, Gilliam, and Weiss (2014) for the system with unbounded
input and output operators. Recently, this theory was extended to
non-spectral systems, e.g., the first order hyperbolic PDE systems
by Xu and Dubljevic (2016a). Schumacher (1983) developed a
finite-dimensional error feedback regulator with the aid of the
Sylvester equation. In the similar line, on the basis of Johnson’s
approach, Deutscher (2011) designed a finite-dimensional output
feedback regulator for Riesz-spectral systems. Motivated by these
works, Xu, Pohjolainen, and Dubljevic (under review) developed
finite-dimensional output feedback and error feedback regulators
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Fig. 1. Block diagram of systems interconnection (plant ΣP , exosystem ΣE and regulators ΣC ) with disturbance d, measurement ym , reference yr , output y, input u and
tracking error e. (a) Configuration of the output feedback regulator; (b) configuration of the error feedback regulator.

for non-spectral infinite-dimensional systems, e.g., the first order
hyperbolic PDE systems.

Recently, in Paunonen (2016), three dynamic error feedback
controllers were introduced for regular linear systems. In particu-
lar, one observer-based robust controller (Section VI)was designed
based on G-condition motivated by Hämäläinen and Pohjolainen
(2010) where the controller has Internal Model Structure (IMS)
and the controller operator G1 has a triangular form. Moreover, an
auxiliary operator (not function-type) Sylvester equationneeds to be
solved. In this manuscript, a new form of the observer-based error
feedback regulator is proposed and the solution of the auxiliary
Sylvester equation is the function of the spatial variable, which
simplifies and reduces complexity associated with the calculation
of the auxiliary Sylvester equation.

In this manuscript, two types of regulators are proposed and
designed, see Fig. 1. Themain contribution is given as the observers
design, i.e. the weighted regulator state

[
(H̃rm(t))T v̂Tr (t)

]T
(or

H̃ere(t)) is used to obtain exponentially accurate estimates for the
plant and exosystem states. To achieve the observer convergence,
the observer error system is decoupled into the PDE-subsystem
and the ODE-subsystem so that the ODE-subsystem and the PDE-
subsystem can be stabilized separately by fixing free regulator
parameters. This decomposition idea was applied in backstepping
designs of the output regulator, see Deutscher (2015a) and in
internal model regulator designs, see Hämäläinen & Pohjolainen
(2010); Paunonen (2016). However, compared with Deutscher
(2015a), the proposed regulators in this manuscript can ad-
dress output regulation problems for coupled PDE systems with
distributed or boundary control (with the aid of the approach
in Natarajan et al. (2014)) inputs. Comparedwith, see Hämäläinen
& Pohjolainen (2010) or Paunonen (2016), a novel output feedback
regulator is provided in thismanuscript and the auxiliary Sylvester
equations introduced here are easier to solve (by introducing
weights H̃ and H̃e).

In more detail, the constructed output feedback regulator is
driven by the measurement ym(t) and the reference yr (t). There-
fore, the observability conditions are studied. Here, the measure-
ment ym(t) does not belong to the set of the controlled output y(t),
while in the design of the error feedback regulator, the proposed
approach yields an alternative and easy choice for finding the
output injection gain for the traditional error feedback regulator
design, see Byrnes et al. (2000) and Xu & Dubljevic (2016a).
In contrast, the regulator parameters in this manuscript can be
easily designed and configured. For infinite-dimensional systems,
the proposed two regulator designs are both applicable and valid
for Riesz-spectral systems, see Deutscher (2011) and non-spectral
systems, see Aksikas et al. (2009). In particular, the free design
parameters of the regulators are configured by applying the sep-
aration principle.

This paper is organized as follows: In Section 2, both the plant
and the exosystem are introduced and some fundamental assump-
tions are stated. In addition, the key results for a full state feed-
back regulator design are recalled. Then, in Sections 3 and 4, two

regulators are designed and the configuration of the parameters
is demonstrated in detail. In order to guarantee the feasibility of
the regulators, the solvability conditions of Sylvester equations and
observability conditions are discussed. Finally, two types of rep-
resentative systems: the parabolic PDE system (spectral system)
and the first order coupled hyperbolic PDE system (non-spectral
system) are studied to verify main results of this manuscript in
Section 5. Section 6 contains the conclusion.

Assume that X and Y are Hilbert spaces and A : X ↦→ Y
is a linear operator, then D(A) denotes the domain of A. L(X, Y )
denotes the space of all linear, bounded operators from X to Y . (If
X = CnX and Y = CnY , then L(X, Y ) = CnX×nY .) If X = Y , then we
write L(X). If A : X → X , then σ (A) is the spectrum of A (the set
of eigenvalues, ifA ∈ CnX×nX ), ρ(A) = C\σ (A) is the resolvent set
and R(λ;A) = (λI − A)−1

∈ L(X) denotes the resolvent operator
for λ ∈ ρ(A). The inner product is denoted by ⟨·, ·⟩. L2(0, 1)m with
a non-negative integer m is a Hilbert space of an m-dimensional
vector of the real functions that are a square integrable over
[0, 1]. Hk(0, 1) with a non-negative integer k, denotes a Hilbert
space defined as the Sobolev space of order k, i.e. Hk(0, 1)m ={
h(·) ∈ L2(0, 1)m :

(
dph
dzp

)
∈ L2(0, 1)m, p = 1, 2, . . . , k

}
. In particu-

lar, H0(0, 1) = L2(0, 1). If the plant is a finite-dimensional sys-
tem, the assumption: A generates a C0-semigroup TA(t) is always
satisfied, and the semigroup is the matrix exponential function,
i.e., TA(t) = eAt , t ≥ 0 (Curtain & Zwart, 1995). eAt is exponen-
tially stable if and only if σ (A) ⊂ C−, i.e., the matrix A is Hurwitz.

2. Problem formulation

The plant — We are concerned with the following infinite-
dimensional linear systemΣP :

ẋ(t) = Ax(t) + Bu(t) + Gd(t), t > 0, x(0) = x0 ∈ X (1)

y(t) = Cx(t), t ≥ 0 (2)

ym(t) = Cmx(t), t ≥ 0 (3)

where

x ∈ X is the state of the system,
X is a complex Hilbert state space,
u ∈ U is an input,
y ∈ Y is the controlled output, and
ym ∈ Ym is the measured output.

U , Y and Ym are complex Hilbert control and output spaces,
respectively. A : D(A) ⊂ X → X is the infinitesimal generator
of a C0-semigroup TA(t) on X , B ∈ L(U, X). The output operators
C, Cm ∈ L(X1, Y ) areA−admissible (see (Xu & Jerbi, 1995) and (Xu
et al., under review)), where the space X1 = D(A) is equipped
with the norm ∥x∥1 = ∥(βI − A)x∥ and β ∈ ρ(A). d(t) ∈ Ud
is disturbance and Ud is a complex Hilbert space. G ∈ L(Ud, X)
denotes disturbance location operator. According to Proposition
4.9 of Tucsnak and Weiss (2014), the system (1)–(3) is well-posed
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