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a b s t r a c t

In this paper, we investigate active on-line diagnosis in discrete event systems. Active diagnosis can be
used for fault detection, fault localization, fault-tolerant control, among others. Discrete event systems are
general models for complex manmade systems. For the active on-line diagnosis, we do not construct the
entire diagnostic automaton off-line. Instead, we look N steps ahead to determine active diagnosability
and calculate diagnostic strategies. Thus, we define active N-diagnosability and investigate the relation
between active diagnosability and active N-diagnosability. We also develop an algorithm to check active
N-diagnosability. If a system is actively N-diagnosable, the algorithm will also give the control that
diagnoses the system. We show that there are significant computational advantages for using the on-line
approach.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Fault detection, fault localization, and fault-tolerant control are
very important in modern engineering systems, as the sizes and
complexities of systems increase dramatically (Blanke, Kinnaert,
Lunze, & Staroswiecki, 2006; Korbicz, Koscielny, Kowalczuk, &
Cholewa, 2003). For example, a networked battery system may
consist of thousands of battery cells. When a cell fails, which is
very likely, if the fault is not detected and located quickly, then it
will cause other cells to fail as well. To detect and locate faults in a
complex system, a systematic approach must be taken. Intuitions
will not work. Ad-hoc methods will produce inconsistent results.

Many complex and networked systems can be modeled as
discrete event systems (DES’s) for fault detection and localization.
There are several advantages in using discrete event system mod-
els. (1) DES models are general. They can represent different types
of systems, from networked battery systems to power systems,
from computer systems to manufacturing systems. (2) They can
be used to solve a large class of diagnosis problems. By properly

✩ The authors of this paper are supported in part by National Science Foundation
of USA under Grant 1507096. The material in this paper was not presented at
any conference. This paper was recommended for publication in revised form by
Associate Editor Christoforos Hadjicostis under the direction of Editor Christos G.
Cassandras.

E-mail addresses: flin@ece.eng.wayne.edu (F. Lin), lywang@wayne.edu
(L.Y. Wang), wchenc@wayne.edu (W. Chen), hanleitao@sina.com (L. Han),
stcc@haining.gov.cn (B. Shen).
1 Fax: +1 313 5771101.

defining faulty events and/or faulty states, the DES approach can be
used for both fault detection and fault localization. (3) DES models
are modular. We can build DES models for components first and
then use parallel composition.

Because of the advantages of using DES models, diagnosis and
diagnosability have been investigated by DES researchers since the
1990s. The results can be divided into two groups: (1) event-based
diagnosis and diagnosability, and (2) state-based diagnosis and
diagnosability.

Event-based diagnosis and diagnosability are first proposed
in Sampath, Sengupta, Lafortune, Sinnamohideen, and Teneketzis
(1995), and then extended in Qiu and Kumar (2006), Sampath,
Sengupta, Lafortune, Sinnamohideen, and Teneketzis (1996) and
others. In this approach, a fault is modeled as an event. Here faults
are general notions that may represent a failure, a partial failure,
or an abnormality. Faulty events are not observable. Some other
events may be observable or unobservable. The goal of diagnosis is
to detect the occurrence of a faulty event after observing a finite
number of observable events. If this can always be done for all
trajectories of a system, then the system is called diagnosable.
Methods to check if a system is diagnosable have been proposed.
If a system is diagnosable, then a diagnoser can be constructed
to diagnose the faults. While many faults can be identified by
passively observing the occurrences of observable events, better
results may be achieved by actively enforcing some events in the
system. Hence, active diagnosis has also been investigated, for
example, in Sampath, Lafortune, and Teneketzis (1998). On-line
diagnosis is studied in Basile, Chiacchio, and De Tommasi (2009).
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State-based diagnosis and diagnosability are investigated in
Lin (1994) and Lin, Lin, and Lin (1997). In the state-based ap-
proach, the state set of a discrete event system is divided into
several subsets. One subset represents normal states; and the other
subsets represent several faults. Different partitions of states can
then be specified depending on the requirements of diagnosis.
Based on a given partition, both off-line diagnosability and on-line
diagnosability are defined. Algorithms to check diagnosability are
also presented in Lin (1994). An application tomixed-signal circuit
testing is discussed in Lin et al. (1997).

Results related to diagnosability, including observability (Lin &
Wonham, 1988), detectability (Shu& Lin, 2013a,b; Shu, Lin, & Ying,
2007), opacity (Lin, 2011; Paoli & Lin, 2012) are also investigated
in discrete event systems.

Recently, we have investigated active diagnosis and diagnos-
ability (Chen, Lin, Wang, Wang, & Xu, 2014). We model a discrete
event system using an automaton with outputs. The observation
is a mapping from the state set to the output set. Diagnosis re-
quirements are generally specified by a partition on the state set.
Assuming that the observation mapping does not provide enough
information to determine which partition the system is in, a di-
agnoser will enforce some controllable events in the system to
‘‘drive’’ the system to some states to determine which partition
the system is in. If this can always be done, then the system is
said to be actively diagnosable. Active diagnosability depends on
the observation mapping, the diagnosis partition, and the con-
trollable events. An algorithm is developed in Chen et al. (2014)
to check active diagnosability. If a system is actively diagnosable,
the algorithm also provides a control that diagnoses the system.
Unfortunately, the complexity of the algorithm is double exponen-
tial (Chen et al., 2014).

To decide control on-line and to reduce the computational
complexity, we propose an on-line approach for active diagnosis
in this paper. We construct an N-step lookahead tree of a system
and check if a control exists in the tree that diagnoses the system.
If a control exists, then the system is actively N-diagnosable. In the
process, the nodes at level N need special attention. We show that
if a system is activelyN-diagnosable, then it is actively diagnosable.
We also find a condition under which the other implication is true.
We then develop an algorithm to check active N-diagnosability.
The algorithm will also produce a control to actively diagnose the
system if the system is actively N-diagnosable. The computational
complexity of the algorithm depends on the depth N .

2. Active diagnosis

In this section,we briefly review the results of Chen et al. (2014)
and introduce some necessary notations. We model a discrete
event system to be diagnosed as an automaton with outputs:

G = (Q ,Σ, δ, Y , h),

where Q is the set of states;Σ is the set of events; Y is the output
space; δ : Q × Σ → Q is the state transition function; and h :

Q → Y is the output function. The observation is state observation,
not event observation as in other papers in the literature (see
Section 1). The state observation is to be interpreted as follows.
When system G is in state q, y = h(q) is observed.

In most papers on diagnosis of discrete event systems, faults
are modeled as events. However, we model faults as states. To
diagnose a fault is to identifywhich state or set of states the system
G is in. Depending on the requirements on diagnostics, we partition
the state space Q into disjoint subsets (cells) as normal states,
fault 1 states, fault 2 states, etc. The resulting partition is denoted
by T . We use q=Tq′ to denote that q and q′ are in the same cell.

The states in the same cell are viewed as equivalent as far as faults
under consideration are concerned.

By active diagnosis, wemean that a diagnoser can actively drive
the system to be diagnosed to certain states by enforcing some
controllable events.2 The set of controllable events is denoted by
Σc ⊆ Σ . Therefore, a control is a string of controllable events
u ∈ Σ∗

c . u represents a diagnostic strategy. While the occurrences
of controllable events is controlled by a diagnoser, the other events
in Σ − Σc can occur in G at any time as long as they are allowed
by the state transition function δ. Hence, under a control u ∈ Σ∗

c ,
the set of all strings that can occur in G is

L(G,Q0) ∩ P−1(u).

In this equation, L(G,Q0) denotes the language generated byG from
the set of possible initial/current states Q0 ⊆ Q , that is,

L(G,Q0) = {s ∈ Σ∗
: (∃qo ∈ Q0)δ(qo, s)!},

where (qo, s)! means (qo, s) is defined. P−1(.) is the inverse projec-
tion of the natural projection P : Σ∗

→ Σ∗
c (Lin&Wonham, 1988),

that is,

P−1(u) = {s ∈ Σ∗
: P(s) = u}.

We call the set of possible states that the system G may be in
currently the (current) state estimate. The current state estimate
is denoted by Qi (Qi ⊆ Q ) and the current output (observation) is
denoted by yi.3 We update the state estimate if (1) a controllable
event σi+1 is enforced by the diagnoser, (2) a new output yi+1 is
observed, or (3) both (1) and (2) occur. Hence, we use (σi+1, yi+1) to
denote a new control execution, a new output observation, or both
as follows. If a new output yi+1 is observed without new control
execution, then σi+1 = ϵ (the empty string), that is, (σi+1, yi+1) =

(ϵ, yi+1). If a new control σi+1 is enforced/executed but no change
in the output, then yi+1 = yi, that is, (σi+1, yi+1) = (σi+1, yi).
If a new control is executed and a new output is observed, then
σi+1 ̸= ϵ and yi+1 ̸= yi. Using this notation, we describe an
observed/controlled trajectory as a sequence

w = (σ1, y1)(σ2, y2) · · · (σi, yi) · · · .

To find state estimates after all possible observed/ controlled tra-
jectories of the system, we define a new diagnostic automaton as
follows.

G̃ = (X, Σ̃, ξ , x0)

= Ac(2Q
× Y , (Σc ∪ {ϵ}) × Y , ξ , (Q0, y0)),

where Ac(.) denotes the accessible part. The event set is Σ̃ =

(Σc ∪ {ϵ}) × Y . The state set is X = 2Q
× Y . The initial/current

state is x0 = (Q0, y0). The state transition function ξ : X × Σ̃ → X
is defined as follows. For x = (Qi, yi) and σ̃ = (σi+1, yi+1), if
σi+1 = ϵ ∧ yi+1 = yi, then ξ (x, σ̃ ) is undefined, otherwise

ξ (x, σ̃ ) = (SOR(NOR((Qi, yi), (σi+1, yi+1)), yi+1), yi+1).

In the above equation, SOR and NOR are defined as follows.

NOR((Qi, yi), (σi+1, yi+1))
= {q ∈ Q : (∃q′

∈ Qi)δ(q′, σi+1) = q ∧ h(q) = yi+1}

SOR((Qi+0.5, yi+1))
= {q ∈ Q : (∃q′

∈ Qi+0.5)(∃s ∈ (Σ −Σc)∗)δ(q′, s) = q
∧ (∀t ≤ s)h(δ(q′, t)) = yi+1},

2 The definition of controllable events in this paper is different than supervisory
control of discrete event systems,where an event is controllable if it can be disabled.
3 The current state estimate must be consistent with the current observation,

that is, Qi ⊆ h−1(yi).
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