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a b s t r a c t

While non-smooth approaches (including sliding mode control) provide explicit feedback laws that
ensure finite-time stabilization but in terminal time that depends on the initial condition, fixed-time
optimal control with a terminal constraint ensures regulation in prescribed time but lacks the explicit
character in the presence of nonlinearities and uncertainties. In this paper we present an alternative
to these approaches, which, while lacking optimality, provides explicit time-varying feedback laws that
achieve regulation in prescribed finite time, even in the presence of non-vanishing (though matched)
uncertain nonlinearities. Our approach employs a scaling of the state by a function of time that grows
unbounded towards the terminal time and is followed by a design of a controller that stabilizes the system
in the scaled state representation, yielding regulation in prescribed finite time for the original state. The
achieved robustness to right-hand-side disturbances is not accompanied by robustness to measurement
noise, which is also absent from all controllers that are nonsmooth or discontinuous at the origin.

© 2017 Published by Elsevier Ltd.

1. Introduction

Motivation. Regulation in finite time (Haimo, 1986) is com-
monly achieved using non-smooth feedback, including sliding
mode control. However, regulation in prescribed finite time is
a more demanding objective, which arises in missile guid-
ance (Zarchan, 2007) and other applications. Two approaches to
solving this problem are common—the classical (and elementary)
proportional navigation feedback, which employs time-varying
gains that go to infinity towards the terminal time, and optimal
controlwith a terminal constraint, where such a dependency of the
gains is implicit.

In this paper we present a systematic approach to regulation
in prescribed finite time, which is inspired by PN for second-
order missile model, but which we present for the general class
of nonlinear systems in the ‘‘normal form’’ with a possibly non-
vanishing uncertainty matched by control.

Literature on finite-time stabilization. Apart from classical
sliding mode control, most finite time control results are built on

✩ The material in this paper was partially presented at the 55th IEEE Conference
onDecision and Control, December 12–14, 2016, Las Vegas, NV, USA. This paperwas
recommended for publication in revised form by Associate Editor Hyungbo Shim
under the direction of Editor Daniel Liberzon.

E-mail addresses: ydsong@cqu.edu.cn (Y. Song), iamwyj123456789@163.com
(Y. Wang), jchollow@ucsd.edu (J. Holloway), krstic@ucsd.edu (M. Krstic).

the ‘‘Lyapunov differential inequality’’ introduced by Bhat and
Bernstein (2000) and refined by Shen and Xia (2008) and Shen
and Huang (2012). By using this inequality, together with other
conditions, C0 finite time feedback is presented for the double
integrator by Bhat and Bernstein (1998) and for a class of planar
systems by Qian and Li (2005). Homogeneous finite time local con-
trol for triangular systems and a certain class of nonlinear systems
was developed by Hui, Haddad, and Bhat (2008), Hong (2002),
Hong and Jiang (2006a); Hong, Wang, and Cheng (2006b). Huang,
Lin, and Yang (2005) perform global finite-time stabilization of
strict feedback systems; Polyakov and Poznyak (2009) present a
sign function based (discontinuous) controller; Feng, Yu, and Man
(2002) design a non-singular terminal sliding controller for robot
systems; Shen and Huang (2009) present a global finite-time ob-
server for globally Lipschitz systems; based on Implicit Lyapunov
Functions (ILF) approach, finite-time and fixed-time stability anal-
ysis for a chain of integrators were presented in Li, Du, and Lin
(2011), Polyakov, Efimov, and Perruquetti (2015), Wang, Li, and
Shi (2014) andWang and Xiao (2010) extended finite time control
to consensus or containment of agents governed by single/double
integrators.

The sophisticated technique of ‘‘adding power integration’’ in-
troduced by Coron and Praly (1991) is employed by most authors
including Huang et al. (2005), Huang et al. (2015), Li et al. (2011),
Wang et al. (2014), and Wang, Song, Krstic, and Wen (2016).
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Most finite time controllers (Bhat & Bernstein, 1998, 2000; Feng
et al., 2002; Hong, 2002; Hong et al., 2001; Hong & Jiang, 2006a;
Hong et al., 2006b; Huang et al., 2015, 2005; Hui et al., 2008; Li et
al., 2011; Miao & Xia, 2014; Qian & Li, 2005; Shen & Huang, 2009;
Shen et al., 2015; Wang et al., 2014, 2016; Wang & Xiao, 2010) use
fractional power feedback of the form x

l
p (with p and l being some

positive odd integers). Such control can only address constant
unknown gains in second-order mechanical systems (Huang et
al., 2015) or high-order systems with known control gains (Hong,
2002; Hong & Jiang, 2006a; Hong et al., 2006b; Huang et al., 2005;
Polyakov et al., 2015; Shen & Huang, 2009).

Contributions of the paper. We introduce an entirely new
methodology for solving finite-time regulation, with a prescribed
regulation time, rather than a regulation time that depends on the
initial condition (see Polyakov & Fridman, 2014) for differences
between finite-time and fixed-time stability). We employ a scaling
of the state by a function that grows unbounded towards the terminal
time (somewhat akin to Seo et al., 2008), and then design a
controller that stabilizes the system in the scaled state represen-
tation, yielding regulation in prescribed time for the original state.
We develop our results for nonlinear systems diffeomorphically
equivalent to the ‘‘normal form’’

ẋi = xi+1, i = 1, . . . , n − 1
ẋn = f (x, t) + b(x, t)u, (1)

where x = [x1, . . . , xn]T is the state, u ∈ R is control, and b, f are
possibly uncertain and non-vanishing. Our result is limited to this
class because non-vanishing uncertainties are impossible to reject
in finite time unless they arematched by control. Since the stability
proof for the class (1) for arbitrary n is rather complicated, we first
present a result for the scalar case in Section 3 and then for the
general case in Section 4. In addition to designs, in Section 2 we
introduce new analysis tools in Lemma 1 and Corollary 1—time-
varying counterparts of the lemmas by Bhat and Bernstein (2000).

The achieved robustness to right-hand-side disturbances is not
accompanied by robustness to measurement noise, which is also
absent from all controllers that are nonsmooth or discontinuous at
the origin.

2. Assumptions and definitions

Assumption 1 (Global Controllability). For system (1) there exists
a known b ̸= 0 (and w.l.o.g. b > 0) such that b ≤ |b(x, t)| < ∞ for
all x ∈ Rn, t ∈ R+.

Assumption 2. (Bound on Matched but Possibly Nonvanishing
Uncertainty) The nonlinearity f in (1) obeys

|f (x, t)| ≤ d(t)ψ(x), (2)

where d(t) is a disturbance with an unknown bound

∥d∥[t0,t] := sup
τ∈[t0,t]

|d(τ )|, (3)

and ψ(x) ≥ 0 is a known scalar-valued continuous function.

The basis of our fixed-time designs is the monotonically in-
creasing function

µ1(t − t0) =
T

T + t0 − t
, t ∈ [t0, t0 + T ), (4)

where T > 0,with theproperties thatµ1(0) = 1 andµ1(T ) = +∞.
We introduce two new fixed-time stability definitions.

Definition 1 (FT-ISS). The system ẋ = f (x, t, d) (of arbitrary
dimensions of x and d) is said to be fixed-time input-to-state stable

in time T (FT-ISS) if there exist a class KL function β and a class K
function γ , such that, for all t ∈ [t0, t0 + T ),

|x(t)| ≤ β
(
|x0|, µ1(t − t0) − 1

)
+ γ

(
∥d∥[t0,t]

)
. (5)

The function µ1(t − t0) − 1 = (t − t0)/(T + t0 − t) starts from
zero at t = t0 and grows monotonically to infinity as t → t0 + T .
Therefore, a system that is FT-ISS is, in particular, ISS, with the
additional property that, in the absence of the disturbance d, it is
fixed-time globally asymptotically stable in time T .

Definition 2 (FT-ISS+C). The system ẋ = f (x, t, d) (of arbitrary
dimensions of x and d) is said to be fixed-time input-to-state stable
in time T and convergent to zero (FT-ISS+C) if there exist class KL
functions β and βf , and a class K function γ , such that, for all
t ∈ [t0, t0 + T ),

|x(t)| ≤ βf

(
β
(
|x0|, t − t0

)
+ γ

(
∥d∥[t0,t]

)
, µ1(t − t0) − 1

)
. (6)

Clearly a system that is FT-ISS+C is also FT-ISS, with the addi-
tional property that its state converges to zero in time T despite
the presence of a disturbance.

Lemma 1. Consider the function

µ(t − t0) =
T n+m

(T + t0 − t)n+m = µ1(t − t0)n+m (7)

on [t0, t0 + T ), with positive integers m, n. If a continuously differen-
tiable function V : [t0, t0 + T ) → [0,+∞) satisfies

V̇ (t) ≤ −2kµ(t − t0)V (t) +
µ(t − t0)

4λ
d(t)2 (8)

for positive constants k and λ, then

V (t) ≤ ζ (t − t0)2kV (t0) +
∥d∥2

[t0,t]

8kλ
, ∀t ∈ [t0, t0 + T ), (9)

where ζ is the monotonically decreasing (smooth ‘‘bump-like;’’ Fry &
McManus (2002)) function

ζ (t − t0) = exp
T

m+n−1

(
1−µ1(t−t0)m+n−1

)
, (10)

with the properties that ζ (0) = 1 and ζ (T ) = 0.

Proof. Solving the differential inequality (8) gives

V (t) ≤ exp−2k
∫ t
t0
µ(τ−t0)dτV (t0)

+
1
4λ

∫ t

t0

exp−2k
∫ t
τ µ(s−t0)dsd(τ )2µ(τ − t0)dτ . (11)

We compute the second term on the right side of (11) to get∫ t

t0

exp−2k
∫ t
τ µ(s−t0)dsd(τ )2µ(τ − t0)dτ

≤ ∥d∥2
[t0,t]

∫ t

t0

exp2k
(
−
∫ t
t0
µ(s−t0)ds+

∫ τ
t0
µ(s−t0)ds

)
µ(τ − t0)dτ

= ∥d∥2
[t0,t] exp−2k

∫ t
t0
µ(s−t0)ds

×

∫ t

t0

exp2k
∫ τ
t0
µ(s−t0)dsd

(∫ τ

t0

µ(s − t0)ds
)

= ∥d∥2
[t0,t] exp−2k

∫ t
t0
µ(s−t0)ds 1

2k
exp2k

∫ τ
t0
µ(s−t0)ds

⏐⏐⏐⏐t
t0

= ∥d∥2
[t0,t] exp−2k

∫ t
t0
µ(s−t0)ds 1

2k

(
exp2k

∫ t
t0
µ(s−t0)ds

− 1
)

= ∥d∥2
[t0,t]

1
2k

(
1 − exp−2k

∫ t
t0
µ(s−t0)ds

)
≤

∥d∥2
[t0,t]

2k
. (12)
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