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This paper investigates designing all possible feedback stabilizers for Boolean control networks (BCNs).
Some new results on the feedback stabilization control design of BCNs are presented. The main tool used in
the paper is the semi-tensor product of matrices. First, the complete family of reachable sets is defined for
BCNs. Then it is shown that all the complete families of reachable sets determine all possible state feedback

stabilizers. Second, using all the complete families of reachable sets, all possible state feedback stabilizers
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are obtained. Third, a necessary and sufficient condition is obtained for the existence of output feedback
stabilizers. Based on this condition, all possible output feedback stabilizers are designed for BCNs. Finally,
the obtained new results are applied to the regulation of the lactose operon in Escherichia coli.
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1. Introduction

In systems biology, Boolean network is a proper model to de-
scribe gene regulatory networks. This model was firstly introduced
by Kauffman (1969), and then it was extensively studied by many
biologists, physicists, and system scientists (Akutsu, Hayashida,
Ching, & Ng, 2007; Ay, Xu, & Kahveci, 2009; Veliz-cuba & Stigler,
2011; Zhao, Kim, & Filippone, 2013). Boolean network is a kind
of finite dynamical systems, where the state of each gene can be
quantized by a Boolean value: active (1) or inactive (0). Conse-
quently, the state of each gene can be determined by a Boolean
difference equation depending on the activation of its neighbors.

It was shown in Ideker, Galitski, and Hood (2001) that “Gene
regulatory networks are defined by trans and cis logic. ... Both
of these types of regulatory networks have input and output”.
By adding suitable inputs and outputs to Boolean networks, one
can conveniently manipulate Boolean networks and develop (op-
timal) control strategies, which can enable medical scientists to
dispense medicines for the treatment of some diseases. Boolean
networks with inputs and outputs are called Boolean control net-
works (BCNs). A major goal of systems biology is to develop new
mathematical tools for the control of BCNs (Akutsu et al., 2007).

Recently, an algebraic state space representation (ASSR) has
been proposed for the analysis and control of Boolean networks via
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the semi-tensor product of matrices (Cheng, Qi, & Li, 2011; Cheng,
Qi, & Zhao, 2012). Using this framework, the dynamics of a Boolean
(control) network can be converted into a linear (bilinear) discrete-
time system. Consequently, the classic control methods can be
applied to analyze Boolean (control) networks. In the last decade,
the ASSR has attracted a great attention from biologists and system
scientists, and there have been lots of excellent results on the con-
trol of Boolean networks. These results include controllability and
observability (Fornasini & Valcher, 2013a; Laschov & Margaliot,
2012; Li & Sun, 2011; Liu, Chen, Lu, & Wy, 2015; Zhao, Cheng, & Qi,
2010), stability and stabilization (Bof, Fornasini, & Valcher, 2015;
Cheng, Qi, Li, & Liu, 2011; Fornasini & Valcher, 2013b; Guo, Wang,
Gui, & Yang, 2015; Li & Wang, 2013; Li, Yang, & Chu, 2013; Li & Yu,
2016), synchronization (Lu, Zhong, Li, Ho, & Cao, 2015; Zhong, Lu,
Liu, & Cao, 2014), optimal control (Chen, Li, & Sun, 2015; Laschov &
Margaliot, 2011), and solutions for other control problems (Feng,
Yao, & Cui, 2013; Li, Wang, & Xie, 2015; Li, Xie, & Wang, 2016; Lu,
Li, Liu, & Li, 2017; Xu & Hong, 2013; Yang, Li, & Chu, 2013; Zhang,
Zhang, & Xie, 2015; Zou & Zhu, 2014).

Among the above control problems of BCNs, the stabilization is
one of the most important issues. The solvability of stabilization
problem can not only help medical scientists design therapeutic
interventions that steer a particular gene regulatory network to a
desirable/healthy state, but also reveal how the structure and orga-
nization of the system contribute to the system stability. Recently,
the stabilization of BCNs has been studied using the ASSR (Bof et al.,
2015; Cheng, Qi, Li, & Liu, 2011; Fornasini & Valcher, 2013b; Li
& Wang, 2013; Li et al., 2013; Li & Yu, 2016). Cheng, Qi, Li, & Liu
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(2011) firstly presented some necessary and sufficient conditions
for the open-loop stabilization and state feedback stabilization of
BCNs. Fornasini and Valcher (2013b) and Li et al. (2013) proposed
a novel procedure to design state feedback stabilizers' for BCNs
by constructing a series of reachable sets. Bof et al. (2015) and Li
and Wang (2013) established some effective algorithms to design
output feedback stabilizers of BCNs. However, as was pointed out
in Bof et al. (2015), Li et al. (2013), Fornasini and Valcher (2016)
and Li and Wang (2013), one cannot obtain all possible feedback
stabilizers for BCNs by using the above results. Particularly, For-
nasini and Valcher (2016) pointed out that “a complete solution
for output feedback stabilization of BCNs is still missing and rep-
resents a challenging open problem”. On the other hand, when
treating some diseases like cancer, the optimal control policies are
necessary in the sense of minimum treatment cycle and minimum
cost (Vahedi, Faryabi, Chamberland, Datta, & Dougherty, 2009).
If one can design all possible feedback stabilizers for the disease
treatment, the optimal control policies will be founded. Hence,
designing all possible feedback stabilizers for BCNs is a meaningful
topic in both theoretical developments and practical applications.
Therefore, it deserves further investigation.

In this paper, using the ASSR, we investigate designing all pos-
sible feedback stabilizers for BCNs, and present some new results
on the feedback stabilization control design of BCNs. The main
contributions of this paper are as follows.

e The complete family of reachable sets is firstly obtained
for BCNs. It is also shown that all the complete families
of reachable sets can determine all possible state feedback
stabilizers.

e Based on all the complete family of reachable sets, one can
easily obtain all possible state feedback stabilizers for BCNs.
Hence, we solve the challenging problem proposed in Bof
etal. (2015), Li et al. (2013) and Li and Wang (2013).

e Using the results on the design of all possible state feed-
back stabilizers and the method proposed in Li and Wang
(2013), we show how to design all possible output feedback
stabilizers for BCNs, which was an open problem proposed
in Fornasini and Valcher (2016).

The rest of this paper is organized as follows. Section 2 formu-
lates the problem studied in the paper. In Section 3, we investigate
how to design all possible feedback stabilizers for BCNs. The main
results of this paper are also presented. An illustrative example is
given in Section 4. Section 5 is a conclusion.

Notations: R, N and Z . denote the sets of real numbers, natural
numbers and positive integers, respectively. D := {1, 0},and D" :=
DXx-+xXD. Ay = {6’; | k=1,...,n}, where 8k denotes the kth
~—————

columnn of the identity matrix I,. A; is briefly denoted by A. An
n x t matrix M is called a logical matrix, if M = [8; &2 --- 8]
We express M briefly as M = §,[i; i --- i]. Denote the set of
n x t logical matrices by £, «;. Col;(A) denotes the ith column of the
matrix A.

2. Problem formulation

Consider the following Boolean control network:
{Xi(t + 1) =fi(X(t), U(t)), i=1,2,...,n,
yi(t) = h(X(¢)), j=1,....,p,

where X(t) = (x1(t), x2(t), ..., x,(t)) € D", U(t) = (uq(t), ...,
um(t)) € D™ and Y(t) = (y1(t), ..., yp(t)) € DP are states, control

(1)

1 A state (output) feedback stabilizer is a state (output) feedback control which
can stabilize the considered system to a given equilibrium.

inputs and outputs of the system (1), respectively, and f; : D™t" —
D,i=1,...,nandh; : D" — D,j =1, ..., parelogical functions.
Given an initial state X, € D" and a control sequence U : N — D™,
denote the state trajectory of the system (1) by X(t; Xo, U).

Definition 1. For a given equilibrium X, = (x§,x5,...,x;) € D",
system (1) is said to be globally stabilizable to X,, if there exist a
positive integer t and a control sequence U : N +— D™ such that
X(t; Xo,U) =X, holdsforVXy € D"and V¢t > .

The objective of this paper is to design all possible state feedback
stabilizers in the form of

ug(t) = ki(x1(t), x2(t), . .., x(t)),

: (2)
Um(t) = km(x1(€), X2(t), . . ., Xa(t)),
where k; : D" +— D,i = 1,...,m are logical functions, which
makes system (1) globally stabilizable to a given equilibrium X, =
(x§,%5,...,x5) e D".

In the following, we convert the system (1) and the state feed-
back control (2) into equivalent algebraic forms, respectively. To
this end, we recall some necessary preliminaries on the algebraic
expression of logical functions via the semi-tensor product of ma-
trices. For details, please see (Cheng, Qi, & Li, 2011, 2012).

Definition 2 (Cheng, Qi, & Li, 2011). The semi-tensor product of
two matrices A € R™" and B € RP*? is

AxB=(A®I)B®I2), (3)

where « = Icm(n, p) is the least common multiple of n and p, and
® is the Kronecker product.

Let A ~ D, where 1 ~ §),0 ~ §2, and “~” denotes two
different expressions of the same thing. Given a logical variable
x € D, the vector form of x = 1is x = 8}, and the vector form of
x=0isx = 8%, Then, we have the following result on the algebraic
expression of logical functions.

Lemma 1 (Cheng, Qi, & Li, 2011). Let f(x1,X2,...,Xs) : D° +—> D
be a logical function. Then, there exists a unique matrix My € Lyy»s,
called the structural matrix of f, such that

flx1,%2, ... X € A, (4)

S
where xi_ X = X1 X -+ X Xs.

s
,Xs) = My x;_q X,

Remark 1.

1. The semi-tensor product of matrices is a generalization of the
conventional matrix product. Thus, we omit the symbol “x”
if no confusion arises.

2. The structural matrices of Negation (—), Conjunction (A) and
Disjunction (V) are M, = 8,[2 1], M, = §[1 2 2 2] and
My = §>[1 11 2], respectively.

Using the vector form of logical variables and setting x(t) =
X xi(t) € A, u(t) = x" ui(t) € Am and y(t) = xP_ yi(t) €
Agp, by Lemma 1, one can convert (1) and (2) into

x(t+1)=Lxu(t) x x(t), (5)
y(t) = Hx(t),

and

u(t) = Kx(t), (6)

respectively, where L € Lyn,,m+n is the state transition matrix,
H € Lopyon is the output matrix, and K € Lym,on is the state
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