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a b s t r a c t

This paper presents a new strategy of simplifying the online computations in linearmodel predictive con-
trol (MPC). Employing a specific type of state dependent parameterization for the optimization variable
in MPC, advantages of explicit MPC are combined with those of online optimization based MPC into an
efficient MPC scheme. The parameterization is computed offline applying a tailored subspace clustering
algorithm to training data consisting of states and corresponding solutions to the MPC optimization
problem. It is then refined to guarantee feasibility of the parameterized optimization. During the offline
design phase, complexity of the parameterization can be adjusted and control performance can be traded
off against online computational effort and storage requirements. Numerical examples evaluate the
presented methods and illustrate their benefits.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Model predictive control (MPC) is a successful control strategy
due to its capability to optimize control performance and take
constraints on system states and controlled inputs explicitly into
account. Yet, its computational load classically caused by solving a
finite horizon open-loop optimal control problem online in each
time step poses demanding requirements for the computational
hardware used and restricts applicability of MPC. Many results
aiming at alleviating this drawback are available, which can be
grouped into a fewmain paradigms. In this paperwe present a new
approach which joins ideas of two of the existing paradigms of fast
MPC schemes.

A first class of simplified MPC algorithms adheres to the on-
line optimization problem and simplifies it such that it can be
solved faster numerically. An important branch therein is based
on parameterizing the decision variable, yielding a smaller opti-
mization problem which can be solved faster. Many practically
appliedMPC schemes fit into this framework and consist of simple
move-blocking strategies where the predicted input trajectory is
just blocked over some time steps (Qin & Badgwell, 2003), mostly
applied disregarding theoretical feasibility as well as closed-loop
stability considerations. More recent results explicitly address fea-
sibility and closed-loop stability (Cagienard, Grieder, Kerrigan,
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& Morari, 2007; Gondhalekar & Imura, 2010; Shekhar & Manzie,
2015) as well as more elaborate ways of determining parameteri-
zations aiming at reducing the performance loss incurred due to
the parameterization and/or extending their feasible set (Khan,
Valencia-Palomo, Rossiter, Jones, & Gondhalekar, 2014; Li, Xi, &
Lin, 2013; Longo, Kerrigan, Ling, & Constantinides, 2011; Valencia-
Palomo, Rossiter, Jones, Gondhalekar, & Khan, 2011).

A second type of fast MPC algorithms alleviates online compu-
tations by shifting computational load offline. As is the strategy
in explicit MPC, a state dependent solution to the open-loop op-
timal control problem is precomputed offline and stored so that
online it only has to be evaluated for the current system state,
see Bemporad, Morari, Dua, and Pistikopoulos (2002), Tøndel,
Johansen, and Bemporad (2003) and many subsequent results. A
downside of such approaches is that the complexity of the so-
lution grows rapidly with increasing problem size, rendering the
approach quickly impractical. As a remedy, simplified sub-optimal
explicit MPC schemes as e.g. in Johansen and Grancharova (2003),
Jones and Morari (2009), Summers, Jones, Lygeros, and Morari
(2011) have been proposed.

Obviously, both paradigms have a complementing nature. Ap-
plying parameterizations no pre-computation or storage of rele-
vant amounts of data is required as all information needed for
control is generated online during runtime. Yet, state dependence
of the solutions is not accounted for or exploited at all. In contrast,
the second approach is completely based on exploiting this depen-
dence. No optimization is required online but large and possibly
obstructive amounts of data have to be dealt with offline and
online. The results presented in the current paper make use of
this situation and join ideas from both paradigms to exploit and
combine their individual advantages: A particular type of state
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dependent parameterization is proposed. In contrast to existing
results, this parameterization explicitly accounts for the state de-
pendence of the optimization it is applied for.

In more detail, we propose a parameterization which is a piece-
wise linear function in the system state and in the parameter,
i.e., the new decision variable. We show how to determine the
parameterization offline applying a tailored subspace clustering
algorithm to training data and to refine the obtained preliminary
result to guarantee feasibility of the final parameterized opti-
mization. During the offline design phase, the complexity of the
parameterization and the dimension of the corresponding online
optimization variable can be selected. Increasing either of the
values improves accuracy of the approximations of optimal input
trajectories. This allows to achieve feasibility of the parameterized
optimization problem for a given set of states and to improve
control performance. Thus, trading off complexity versus control
performance of the resultingMPC scheme is possible. In contrast to
most existing parameterizations, the proposed parameterization
explicitly depends on the state to be applied for and it is designed to
guarantee feasibility of the parameterized optimization for a given
set of states.

Summarizing, the presented method exploits – in the spirit
of explicit MPC – state dependent information on optimal input
trajectories encoded in the parameterization and combines it with
online optimization based MPC. Thus, we call the method semi-
explicit MPC.

Further results combining the explicit approach with online
optimization are Zeilinger, Jones, and Morari (2011) where a
simplified suboptimal explicit solution is used to warm-start an
online optimization, and Jost and Mönnigmann (2013) where
state-dependent information about inactive constraints is stored
and exploited online to simplify the optimization. Beyond that,
in Borrelli, Baotić, Pekar, and Stewart (2010) and Ferreau, Bock,
and Diehl (2008) fast online optimization based MPC algorithms
are proposedwhich are inspired by the theory behind explicitMPC.
In contrast, in Lazar andHeemels (2003) the term semi-explicitMPC
has been used in a slightly different meaning.

The paper at hand extends our previous work (Goebel &
Allgöwer, 2013, 2014). A simplified and improved way of com-
puting the parameterization is presented which considerably ex-
tends applicability of the method to systems with increased state
space dimension. Comprehensive and more general theoretical
considerations as well as larger numerical examples are presented
and evaluated in detail. The examples highlight the effect of the
mentioned tuning knobs as well as the general benefits of the
proposed method. An extended version of the current paper is
available (Goebel & Allgöwer, 2017a).

The remainder of this paper is organized as follows. The con-
trol problem considered and the proposed parameterization are
introduced in Section 2. A tailored clustering algorithm to compute
the parameterization is presented in Section 3. Section 4 contains
the offline procedure to determine the parameterization, whereas
in Section 5 the online procedure applying the parameterization
is presented. We evaluate the algorithms and show numerical
examples in Section 6 and conclude in Section 7.

2. Preliminaries and problem formulation

2.1. Control problem and underlying MPC scheme

Throughout this paper control of a linear time-invariant
discrete-time system of the form

x+
= Ax + Bu, (1)

with constrained state x ∈ X ⊆ Rn and constrained input u ∈

U ⊆ Rm is considered, where X and U are the constraint sets. The

control problem considered is to render the origin of this system
asymptotically stable, i.e. to drive initial conditions in a given set
Xf ⊆ X towards the origin subject to a given performance criterion∑

∞

k=0ℓ(xk, uk) → min, where ℓ : Rn
×Rm

→ R is a given positive
definite stage cost function satisfying ℓ(x, u) ≥ α(∥x∥) for a K-
function α. The presented algorithm takes a classical MPC scheme
as starting point based on the following optimization problem

P1(x) : min
U∈RmN

J(x,U)

s.t. xk+1 = Axk + Buk,

xk ∈ X , uk ∈ U ∀k = 1, . . . ,N − 1,
x0 = x, u0 ∈ U, xN ∈ XT ,

where J(x,U) =
∑N−1

k=0 ℓ(xk, uk) + F (xN ) and U = (u⊤

0 , . . . , u⊤

N−1)
⊤

is the stacked vector of predicted inputs and x1, . . . , xN is the
resulting predicted state trajectory, F : Rn

→ R andXT ⊂ Rn are a
terminal cost function and a terminal set, respectively. Let J∗(x) and
U∗(x) denote the optimal value and optimizer of P1(x). As is well
known, in MPC this optimization is solved for the current system
state, the first part of the obtained input trajectory is applied to
the system and the process is repeated over a shifted horizon.
Following standard assumptions are kept throughout the paper.

Assumption 1 (Mayne, Rawlings, Rao, & Scokaert, 2000). Let the
following hold

• The set XT fulfills XT ⊂ X , XT is closed and 0 ∈ XT .
• A local control law κ(·), defined on XT is know with κ(x) ∈ U

for all x ∈ XT such that the following holds:
• For all x ∈ XT it holds that Ax + Bκ(x) ∈ XT .
• For x ∈ XT the terminal cost fulfills F (Ax + Bκ(x)) − F (x) +

ℓ(x, κ(x)) ≤ 0.

Furthermore, we assume the following.

Assumption 2. Let X ,U,XT and Xf be polytopes with 0 in their
respective interiors.

Based thereon, P1 can be rewritten in a condensed form

P1(x) : min
U

J(x,U), s.t. GU ≤ W + Ex

using suitable matrices G, W and E. We assume the set Xf to be
given in the control problem. For the problem to be feasible Xf
has to be a subset of the N step controllable set to the terminal set
XT . We will assume this implicitly throughout and call Xf desired
feasible set.

2.2. The parameterization

The proposed parameterization has the form

p(x, Ũ) = pi(x, Ũ) = MiŨ + Kix, for x ∈ Di, i ∈ {1, . . . , K } (2)

with sets Di ⊂ X and matrices Mi ∈ RmN×q and Ki ∈ RmN×n

where q < mN holds. For the parameterization to be well-defined
we require Di ∩ Dj = ∅ for i ̸= j and discuss in the sequel of
the paper how this can be relaxed. Using this parameterization,
K parameterized versions of the original optimization problem P1
are formulated

P2i(x) : min
Ũ

J(x, pi(x, Ũ)) s.t. Gpi(x, Ũ) ≤ W + Ex,

where we denote the optimal value by J∗Pi (x). The parameterization
is required to be such that P2i(x) is feasible for all x ∈ Di. In order
to recover overall at least the feasible set Xf for the parameterized
optimization, the union of the sets Di has to contain Xf , i.e., Xf ⊆

∪iDi. A second goal is to have a parameterization such that J∗Pi (x) is
close to J∗(x), i.e. performance is maintained. The main challenge
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