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it is applied to an electromechanical system, i.e., magnetic levitation.
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1. Introduction

It is more than two decades that some methods are developed
which try to respect and use the nonlinearity for controller de-
sign. Nonlinearity cancellation with high gain feedbacks, despite
its applications, has some drawbacks. For example, nonlinearity
cancellation can destroy the structure of closed loop system, which
in turn may reduce the robustness, raise the energy consumption
and result in unnatural behaviors. Even more, nonlinear cancella-
tion may obstruct controller design procedure for under-actuated
and non-minimum phase systems. Passivity based control is a
solution framework in order to respect and use the nonlinearity
for controller design (Ortega & Garcia-Canseco, 2004).

Passivity based controller design methods have a wide range
of applications such as those in mechanical, electrical and elec-
tromechanical systems (Ortega, Perez, Nicklasson, & Sira-Ramirez,
1998). Passivity concept is closely related to the energy concept in
physical systems; so, a physically based modeling approach may
have some benefits for passivity based control methods; which are
witnessed in port Hamiltonian framework (Duindam, Macchelli,
Stramigioli, & Bruyninckx, 2009).
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Port Hamiltonian framework stems from classical mechanics,
combines it systematically with network modeling and can use
these properties effectively in the controller design (Duindam
et al., 2009). A port Hamiltonian system, simply consists of a
Dirac structure which represents the network interconnection of
energetic parts of the system, an energy function which is called
Hamiltonian and models the dynamic behavior of energetic ele-
ments of the system, and a resistive structure which models the
dynamic behavior of energy dissipative elements of the system.

It is evident that, in the presence of adequate dissipation, the
energy of a system reaches its minimum. Therefore, if the min-
imum of energy function is placed at the desired equilibrium
point, then damping injection is sufficient for controller design.
Otherwise, beyond damping injection, the controller must shape
the energy in order to put the minimum of energy at the desired
equilibrium point. In some cases, in addition to energy shaping and
damping injection, the interconnection of the system, represented
by Dirac structure in port Hamiltonian systems, must be modified.
The method, which can handle these modifications, is called IDA-
PBC (Interconnection and Damping Assignment Passivity Based
Control) (Ortega, van der Schaft, Maschke, & Escobar, 2002).

In recent years, a vast number of applications of IDA-PBC for
controller design in the framework of port Hamiltonian systems
have been reported in the literature, such as Acosta, Ortega,
Astolfi, and Mahindrakar (2005) for under-actuated mechanical
systems, Dorfler, Johnsen, and Allgéwer (2009) for process systems
and Rodriguez and Ortega (2003) for electromechanical systems.
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See Duindam et al. (2009) and Ortega and Garcia-Canseco (2004)
for further applications.

Despite the priority of IDA-PBC in regulation, there is no track-
ing version of IDA-PBC except (Fujimoto, Sakurama, & Sugie, 2003;
Kotyczka, 2013). For tracking, it is common to stabilize the error
dynamics. However, it is rare that error dynamics of nonlinear
systems admit a port Hamiltonian structure. As a result, it is not
straightforward to gain from IDA-PBC for stabilizing error dynam-
ics. This is the main obstruction of extending IDA-PBC for tracking
controller design. In papers like Fujimoto et al. (2003), a time
dependent transformation called generalized canonical transfor-
mation is used to transform the error dynamics to a time variant
form of port Hamiltonian systems. This transformation is obtained
by solving a PDE equation and could be applied to only a class of
port Hamiltonian systems. Actually, methods similar to the one
posed in Fujimoto et al. (2003) are not extension of IDA-PBC,
but are tracking design methods for port Hamiltonian systems.
Methods such as those introduced in Kotyczka (2013) use IDA-
PBC for stabilization of predefined locally linear error dynamics.
However, using error dynamics is not accordant with the spirit of
energy based methods such as IDA-PBC.

Instead of stabilization of error dynamics, tracker design may
be treated through contraction technique in port-Hamiltonian sys-
tems. Contraction analysis studies the convergence of trajectories
of a system to each other. Similar to Lyapunov theorem, for con-
traction analysis, it is needed to find a suitable function (metric) to
deduce the convergence. It is a nice feature of port Hamiltonian
systems that their contraction can be determined by checking
some conditions on the corresponding Dirac structure, resistive
structure and Hamiltonian function.

Based on contraction of port Hamiltonian systems, in the con-
tinuation of Yaghmaei and Yazdanpanah (2015), an extension of
IDA-PBC for tracking controller design is proposed. IDA-PBC can
be considered, simply, as a controller design technique which con-
verts an open loop system to a desired closed loop one. Therefore,
after characterizing desired closed loop port Hamiltonian systems
suitable for tracking, IDA-PBC straightforwardly may be employed
for tracking goal. This claim will be precisely stated and proved in
the following sections.

The rest of the paper is organized as follows. The preliminaries
on port Hamiltonian systems and original IDA-PBC are summarized
in Section 2. Contractive port Hamiltonian systems, which can be
considered as desired closed loop system for IDA-PBC, are char-
acterized in Section 3. Section 4 introduces the extension of IDA-
PBC for tracker design and includes some discussion on relation be-
tween regulation and tracking via IDA-PBC. The proposed method
is applied to magnetic levitation for tracking design, in Section 5.
The paper ends with a conclusion in Section 6.

In the subsequent sections, AT (A*) is used for the transpose
(conjugate transpose) of matrix A, respectively. A > B (A > B)
means that matrix A — B is positive definite (positive semi-definite,
respectively). Amax(A) and Apin(A) stand for the largest and smallest
eigenvalues of matrix A, respectively. Similarly, omax(A) and opmin(A)
represent the largest and smallest singular values of matrix A,
respectively. I is used for identity matrix, O for scalars, vectors and
matrices with zero elements, and e; for vectors whose ith element
is 1 and the others are 0; dimensions of I, 0 and e; are determined
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continuously differentiable function of H(x) : R" — R and
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V2H(x) is a matrix whose ijth element is di;'i For any function
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H(x,t) : T x R" — R, where I C R, the term VH(x, t) is thTe
derivative with respect to x, i.e., VH(x, t) = % gTHz e 37*,’1
Similarly, V2H(x, t)is defined with respect to x. Finally, throughout
this paper, it is assumed that all functions are sufficiently smooth
and, for the sake of simplicity, the arguments of a function are
dropped whenever evident from the context.

2. Interconnection and damping passivity based control

A most applied and not very special class of port Hamiltonian
systems can be written as the following equations:

% = (J(x) — R(x)) VH(x) + g(x)u, x € Dy C R",

1
y =g (x)VH(x) )

u,y e R™
J(x) is an everywhere skew symmetric matrix (i.e., J(x) +JT(x) =
0 Vx). J(x) is called interconnection matrix and is determined by
the Dirac structure of the system. R(x), which is called dissipation
matrix, is determined by both dissipative elements and the Dirac
structure and is positive semi-definite everywhere (i.e., R(x) =
RT(x) > 0 V¥x).(u, y) is the control port and the product u"y is the
power entering/outgoing into/from the system via the port (u, y).
Finally, Dy is the state space of the system, which is an open subset
of R™.

Consider a closed loop system in the class of (1) (with no input)
as:

X = (Ja(x) — Rg(x)) VHa(x). (2)
Ifx* is the minimum of Hy, then Hy can be considered as a Lyapunov
function for which Hy = —VTH4R;VHs; < 0. Therefore, if the

largest invariant subset in the set {x € R" | VT HsR;VH; = 0} is
equal to {x*}, then x* is an asymptotically stable equilibrium point
due to the LaSalle’s invariance theorem. Control objective in this
framework reduces to finding a controller that converts system
(1) into (2) with the mentioned properties. The following theorem
provides this powerful tool for the purpose of regulation of port
Hamiltonian systems (Ortega et al., 2002).

Theorem 1 (IDA-PBC). Suppose that there exist Hy : R" — R,
Ja(x) = —JI(x) and R4(x) = RI(x) > O satisfying the following
equation for the system (1):

£100((100 — R VHRX)) = 2.(0)( (ax) — Rax)) VHa0))  (3)

where g, is the full rank left annihilator of g. If x*(the desired
equilibrium point) is a minimum of Hg, then there exists a controller
such as:

u = (gT0g(0) "800 () — Ra(x) VHa()
— (100 — Rx)) VH(X))

which can locally stabilize system (1) and the closed loop system
becomes as (2). Furthermore, if x* be the largest invariant subset of
{x € R™ | VT Hy(x)R4(x)VH4(x) = 0}, then x* is asymptotically stable.
Finally if x* is a global minimum of Hy and Hy is radially unbounded,
then the result holds globally. O

(4)

Eq. (3) is called matching equation and is the substantial part
of this method. One can fix (assign) the closed loop dissipation
matrix R; and interconnection matrix J4, and then obtains Hy by
solving the mentioned equation. A sufficient condition for x* to be
a minimum for a twice continuously differentiable function Hy(x)
can be stated with the help of first and second derivative of Hy(x)
as:

VHy(x)|,» = 0 (5)
V2Hq(x)| ., > 0. (6)

*

In this paper, we are seeking a method similar to Theorem 1
for non-constant desired trajectory x*(t). It is clear that a system
cannot track all trajectories in its state space. In other words, the
desired trajectory must be feasible to be tracked. The trajectory
x*(t) : I € R — R", where I is an open subset of R, is a feasible
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