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Abstract

This paper is devoted to computations of eigenvalues and eigenvectors for the Schrödinger operator with constant magnetic field in a
domain with corners, as the semi-classical parameter h tends to 0. The eigenvectors corresponding to the smallest eigenvalues concentrate
in the corners: They have a two-scale structure, consisting of a corner layer at scale

ffiffiffi
h
p

and an oscillatory term at scale h. The high fre-
quency oscillations make the numerical computations particularly delicate. We propose a high order finite element method to overcome
this difficulty. Relying on such a discretization, we illustrate theoretical results on plane sectors, squares, and other straight or curved
polygons. We conclude by discussing convergence issues.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Superconductivity theory, modelled by Ginzburg and
Landau, motivates investigations of the Schrödinger oper-
ator with magnetic field and Neumann boundary condi-
tions in two-dimensional domains. The Schrödinger
operator �ðhr� iAÞ2 derives from a linearization of the
Ginzburg–Landau functional and the behavior of its eigen-
values and eigenvectors as h! 0 gives information about
the onset of superconductivity in the material, see
[6,7,13,14,20,29] for the general framework and [2,15–
19,24,26,28] for more closely related questions concerning
the Schrödinger operator.

We give the mathematical framework we will work
within: let X denote a bounded polygonal domain in R2

and A the magnetic potential 1
2
ð�x2; x1Þ defined on R2.

We investigate the behavior of the eigenpairs of the Neu-
mann realization P h on X for the Schrödinger operator

�ðhr� iAÞ2 as h! 0. The variational space associated
with Ph is H 1ðXÞ and its domain is the subspace of func-
tions u such that P hu 2 L2ðXÞ and m � ðhr� iAÞu ¼ 0 on
oX, with m denoting the unit normal to oX.

Let us first mention that the Schrödinger operator Ph is
gauge invariant in the sense of the following proposition:

Proposition 1.1. Let / 2 H 2ðXÞ, then u is an eigenvector

associated with the eigenvalue l for the operator �ðhr�
iAÞ2 if and only if u/ :¼ ei/=hu is an eigenvector associated

with the eigenvalue l for the operator �ðr � iðAþr/ÞÞ2.

In particular, the eigenvalues of the Schrödinger opera-
tor are the same for any potential ~A such that
curl ~A ¼ curlA. This allows the use of adapted gauges
according to the domain.

In [10], a complete asymptotic expansion of low-lying
eigenstates is exhibited for curvilinear polygonal domains
and refined results are proved in the case when the domain
has straight sides and the magnetic field is constant. The
eigenmodes have a two-scale structure, in the form of
the product of a corner layer at scale

ffiffiffi
h
p

with an oscilla-
tory term at scale h. The latter makes the numerical
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approximation delicate. A posteriori error estimates are
used in [3,9] to determine localized mesh refinement in a
low degree finite element method. We investigate here a
finite element method using high degree polynomials, as
described in Section 2.

It is proved in [10] that the study of the Schrödinger
operator Ph in a domain with corners of openings
a1; . . . ; aJ , relies on those of the Schrödinger operator
Qa :¼ �ðr � iAÞ2 on an infinite sector of opening a, for
a ¼ a1; . . . ; aJ . Section 3 is devoted to this operator. We
show computations which make theoretical results more
complete.

The next sections deal with the asymptotic behavior of
the eigenstates of Ph as h goes to 0. We give numerical solu-
tions which illustrate the clustering of eigenvalues, depend-
ing on the symmetries of the domain. Several particular
polygonal domains are investigated, highlighting different
points of the theory: Tunneling effect for the square, con-
centration in the lowest corners for the trapezoid, the rhom-
bus or the L-shaped domain. We end with a curvilinear
polygon for which the asymptotics is appreciably different.

We conclude the paper in Section 7 by numerical error
curves for the specific case of a standard square of length
2, and h = 0.02. We compare the performances of ‘‘p-
extensions’’ (increasing the polynomial degree on a fixed
mesh), and of ‘‘h-extensions’’ (refining the mesh with a
fixed degree). According to the magnitude of h, a locking
phenomenon is present, stronger and stronger as h! 0.
A disturbing feature of this locking is the preasymptotic
convergence to interior modes, corresponding to the lowest
Landau level, significantly larger than the correct eigen-
values. Our conclusion is the necessity for using ‘‘p-exten-
sions’’ if we wish to capture fine effects like the tunneling
effect in symmetric domains.

2. General results on eigenvalue approximation

In the sequel, we will show numerical results of spectral
approximations for the Schrödinger operator in various
domains. We wish first to recall some facts on the numer-
ical computation of eigenvalues and eigenvectors by a finite
element Galerkin method, which serve as a basis to justify
the relevance of our results.

Let us fix some notation:

• lh;n is the nth eigenvalue of the operator Ph,
• uh;n is a normalized associated eigenfunction in
V ¼ H 1ðXÞ,

• ðT‘Þ‘>0 is a family of quadrilateral meshes, where ‘ is
the maximum size of the elements (we changed the tra-
ditional h into ‘ since the letter h already stands for
the small semi-classical parameter),

• Qp is the standard space of polynomials of partial degree
p in the reference square element,

• V‘;p is the conforming discrete variational space associ-
ated with the Qp-reference square element on the mesh
T‘,

• ðl‘;ph;n; u
‘;p
h;nÞ is the nth discrete eigenpair of Ph in V‘;p:Z

X
ðhr� iAÞu‘;ph;n � ðhr� iAÞvdx ¼ l‘;ph;n

Z
X

u‘;ph;n�vdx;

8v 2V‘;p:

For the first eigenpair (n = 1) or, more generally, if
lh;n 6¼ lh;n�1, it is known from [4,5,11] that the following
Céa-like estimate holds

jlh;n � l‘;ph;nj 6 L‘;ph;n sup
u2Mh;n

inf
v2V‘;q

ku� vk2
V; ð1Þ

where Mh;n is the set of normalized eigenvectors1 associated
with lh;n and L‘;ph;n a positive constant which, for each fixed
h > 0 and n 2 N, is bounded as ‘! 0 or p!1. Moreover
the corresponding estimate for eigenvectors reads: There
exists an eigenvector ~uh;n associated with lh;n satisfying

k~uh;n � u‘;ph;nkV 6 L‘;ph;n sup
u2Mh;n

inf
v2V‘;q

ku� vkV: ð2Þ

Thus, discretization errors on the eigenpairs are essen-
tially bounded by the best approximation errors on the
eigenvectors of Ph. We have to keep in mind that the latter
closely depends on the semi-classical parameter h.

In the following, we will interpret the Galerkin approx-
imations obtained for the eigenpairs, with respect to the
asymptotic results of [10]. We emphasize the fact that, since
by construction V‘;p �V, the computed eigenvalues will
always be greater than the exact eigenvalue of same rank.

All the results displayed in this paper have been
obtained with the Finite Elements Library Mélina, see
[27]. Computations are mostly done with pretty coarse
meshes (consisting of less than 100 quadrilaterals), but with
high polynomial degree (10 in general, referred to as Q10-
approximation). We justify our choice of a ‘‘p-extension’’
(where the degree p of polynomials is increased), rather
than a ‘‘h-extension’’ (where the size ‘ of the elements is
decreased), by the fact that– for the same number of
degrees of freedom– a p-extension captures oscillations
more accurately than a h-extension, see [1,22,23] for related
questions concerning the Helmholtz equation and disper-
sion relations at high wave number. This point is discussed
in more detail in Section 7.

3. Model operators in infinite sectors

This section is devoted to the study of the Schrödinger
operator �ðr � iAÞ2 in an infinite sector: The analysis of
the operator Ph in a bounded domain with corners relies
on this model situation. We first recall some theoretical
results from [8] concerning the spectrum of the operator
and, next, we show some numerical experiments which
illustrate some of these results or give hints on how to
extend them.

1 If lh;n ¼ lh;n�1, the set Mh;n has to be modified accordingly.
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