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a b s t r a c t

Stationary-action formulations of dynamical systems are considered. Use of stationary-action formula-
tions allows one to generate fundamental solutions for classes of two-point boundary-value problems
(TPBVPs). One solves for stationary points of the payoff as a function of inputs rather than minimiza-
tion/maximization, a task which is significantly different from that in optimal control problems. Both a
dynamic programming principle (DPP) and a Hamilton–Jacobi partial differential equation (HJ PDE) are
obtained for a class of problems subsuming the stationary-action formulation. Although convexity (or
concavity) of the payoff may be lost as one propagates forward, stationary points continue to exist, and
one must be able to use the DPP and/or HJ PDE to solve forward to such time horizons. In linear/quadratic
models, this leads to a requirement for propagation of solutions of differential Riccati equations past fi-
nite escape times. Such propagation is also required in (nonlinear) n-body problem formulations where
the potential is represented via semiconvex duality. The dynamic programming tools developed here are
applicable.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The classical approach to solution of energy-conserving dynam-
ical systems is integration of Newton’s second law. An alternative
viewpoint is that a system evolves along a path which makes the
action functional stationary, i.e., such that the first-order differen-
tial around the path is the zero element. This latter viewpoint ap-
pears particularly useful in some applications in modern physics,
including gravitational systems where relativistic effects are non-
negligible and systems in the quantumdomain (cf. Feynman, 1948;
Feynman, 1964; Gray & Taylor, 2007; Padmanabhan, 2010). Our in-
terests are more pedestrian; the stationary-action formulation has
recently been found to be quite useful for generation of fundamen-
tal solutions to two-point boundary-value problems (TPBVPs) for
conservative dynamical systems. For sufficiently short time hori-
zons, stationarity of the action typically corresponds to minimiza-
tion of the action. That is, the stationary point is a global minimum
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of that action (cf., Dower&McEneaney, 2013;McEneaney&Dower,
2013, 2015). For longer time horizons, the stationary point is more
typically a saddle.

As our motivating interest is in solution of TPBVPs for
conservative dynamical systems, we note that this specifically
includes mass–spring, wave equation and n-body problems
(Dower & McEneaney, 2013; McEneaney & Dower, 2013, 2015).
By appending a min-plus delta function terminal cost to the
action functional, we obtain a fundamental solution object for
such TPBVPs. Min-plus convolutions of this object with functionals
associated to specific terminal conditions yield the solutions of the
specific TPBVPs. As a change in the boundary data only requires
convolution with a different functional, our object may best be
termed a fundamental solution for TPBVPs, corresponding to the
given time horizon. It is worth remarking that, further, one can
populate the fundamental solution semigroup by convolving the
fundamental solution with itself, enabling solution of the TPBVP
for all strictly positive horizons.

As noted above, for sufficiently short time horizons, one may
obtain the stationary action solution byminimization of the action
functional, in which case it is obvious that the fundamental
solution is derived from the value function for an optimal control
formulation. However, for longer horizons, we must find the
stationary point, and this requires a new set of tools. We define
stationarity and value for such problems. Surprisingly, for a specific
class of terminal costs, one may obtain a dynamic programming
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principle (DPP) for stationarity, where this is directly analogous to
standard DPPs (for optimization). We do not look for the absolute
weakest assumptions, but only a reasonable first-foray set. We
also formally write the corresponding Hamilton–Jacobi partial
differential equation (HJ PDE), and then obtain a verification result,
which is also quite similar to that found for classical optimal
control problems. We remark that a verification result implies
that any solution of the HJ PDE in the specified class must be the
value function. This validates the approach of solving a stationarity
problem (and hence the related TPBVP if the stationarity problem
is generated by such) by solving the associated HJ PDE problem.

In the mass–spring case (which appears in Section 3 as
a motivating example), the stationary-action problem is lin-
ear–quadratic, and the HJ PDE reduces to a differential Riccati
equation (DRE). By the above-noted verification result, we see that
solution of the DRE yields solution of the stationarity problem,
and any corresponding TPBVP. The wave equation (Dower & McE-
neaney, 2013) also yields a DRE, albeit infinite dimensional. The
n-body problem may be reduced to a parameterized set of time-
dependent DREs (McEneaney &Dower, 2013, 2015).We see that in
all cases, solutions of DREs form a critical building block. Of course,
DREs can exhibit finite escape times, and do so in these cases. In
classical optimal control, one is not interested in propagation of
the solution past such escape times. However, in stationarity prob-
lems, these may correspond to points where one loses convexity
[concavity] of the payoff. Although the minimum [maximum] may
go to −∞ [+∞], the stationary value may be well-defined and fi-
nite past such asymptotes, and one must propagate the solution
beyond them. The DPP yields a means for propagation through es-
cape times, and this will be indicated.

Although stationary action is the motivating problem class, the
theory developed below is applicable to wider classes of problems,
where one is seeking a stationary point. An obvious example is that
of certain differential games. Extensions to stochastic cases appear
possible as well, but are not considered here.

Section 2 contains relevant definitions. Section 3 presents a
simplemass–spring TPBVPmotivating example. Section 4 contains
the main results—the DPP and HJ PDE verification theorem.
Section 5 reduces to the linear/quadratic case, and indicates a
means for propagation of DREs past escape times. Section 6 very
briefly indicates some application areas.

2. Stationarity definitions

Recall that we are seeking stationary points of payoffs, which
is unusual in comparison to the standard classes of problems in
optimization. In analogy with the language for minimization and
maximization, we will refer to the search for stationary points
as staticization, with these points being statica (in analogy with
minima/maxima) and a single such point being a staticum (in
analogy with minimum/maximum). Prior to the development, we
make the following definitions. Suppose Y is a generic normed
vector space with GY ⊆ Y, and suppose F : GY → R. We say
ȳ ∈ argstat{F(y) | y ∈ GY} if ȳ ∈ GY and either

lim sup
y→ȳ,y∈GY\{ȳ}

|F(y)− F(ȳ)|
|y − ȳ|

= 0, (1)

or there exists δ > 0 such that GY ∩ Bδ(ȳ) = {ȳ} (where Bδ(ȳ)
denotes the ball of radius δ around ȳ). If argstat{F(y) | y ∈ GY} ≠ ∅,
we define

stat
y∈GY

F(y) .= stat{F(y) | y ∈ GY}

.
=


F(ȳ)

 ȳ ∈ argstat{F(y) | y ∈ GY}

. (2)

If argstat{F(y) | y ∈ GY} = ∅, staty∈GYF(y) is undefined. Through-
out, we will abuse notation by writing ȳ = argstat{F(y) | y ∈ GY}

in the event that the argstat is the single point, {ȳ}, and similarly
for stat.

In the case where Y is a Hilbert space, and GY ⊆ Y is an open
set, F : GY → R is Fréchet differentiable at ȳ ∈ GY with Fréchet
derivative Fy(ȳ) ∈ Y if

lim
v→0, ȳ+v∈GY\{ȳ}

|F(ȳ + v)− F(ȳ)− ⟨Fy(ȳ), v⟩|
|v|

= 0. (3)

The following is immediate from the above definitions.

Lemma 1. Suppose Y is a Hilbert space, with open set GY ⊆ Y and
ȳ ∈ GY . Then, ȳ ∈ argstat{F(y) | y ∈ GY} if and only if Fy(ȳ) = 0.

3. Motivational examples

As indicated in the introduction, an important problem class
which motivates this effort is that of TPBVPs for conservative
systems.

3.1. A simple mass–spring problem

We first examine the classic one-dimensional mass–spring
example in a substantial detail in order to provide motivation
and insight. Although the problem is essentially trivial, it provides
a nice means for obtaining a sense of the stationary action
principle as a tool for understanding system dynamics and TPBVPs.
Further, as remarked above, the stationary action viewpoint is
the accepted viewpoint in modern physics (cf., Feynman, 1948;
Feynman, 1964; Gray & Taylor, 2007; Padmanabhan, 2010), and as
such, it will be ultimately necessary for advanced applications. It
also provides exceptional computational advantages for difficult
classes of problems, such as TPBVPs in the gravitational n-body
case (McEneaney & Dower, 2013, 2015).

Remark 2. Although the mass–spring model has an analytically
solvable form due to the quadratic potential, this potential is not
physically reasonable (the potential approaches +∞ as |x| →

∞), and induces degeneracies, particularly at half-period times.
Nonetheless, it is useful for building intuition.

Consider the mass–spring problem with mass, m, and spring-
constant, K (typically given as ξ̈ = −(K/m)ξ ). The associated
stationary action TPBVP payoff, J∞ : T̂ ×R×U∞ ×R → R∪{∞}

with T̂ .
= {(s, t) ∈ R2

| 0 ≤ s ≤ t < ∞} and U∞

.
= Lloc

2 (0,∞), is
given by

J∞(s, t, x, u, z) =

 t

s

m
2
u2(r)−

K
2
ξ 2(r) dr + ψ∞(ξ(t), z), (4)

where ξ̇ (r) = u(r), r ∈ (s, t), ξ(s) = x, (5)

ψ∞(x, z) .=

0 if x = z,
+∞ otherwise. (6)

Solution of this stationary-action problem will yield solution of
the TPBVP given by dynamics mξ̈ (r) = −∇V (ξ(r)) with initial
position x ∈ Rn and terminal position z ∈ Rn for the given duration
t and given potential function (McEneaney & Dower, 2013, 2015),
where in this example the potential is V (x) = (K/2)x2.

The stationary action solution, u∗, is such that J∞u (s, t, x, u
∗, z)

= 0, where J∞u denotes the Fréchet derivative of J∞ with respect
to u as per (3). Here, we take K = m = 1. In McEneaney
and Dower (2013, 2015), one notes that if t − s < π/2, then
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