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a b s t r a c t

We use incremental homogeneity, gain adaptation and incremental observability for proving new results
on robust observer design for systemswith noisymeasurement and bounded trajectories. A state observer
is designed by dominating the incrementally homogeneous nonlinearities of the observation error
system with its linear approximation, while gain adaptation and incremental observability guarantee
an asymptotic upper bound for the estimation error depending on the limsup of the norm of the
measurement noise. A characteristic and innovative feature of this observer is the mixed low/high-gain
structure in combination with saturated state estimates and dynamically tuned gains and saturation
levels. The gain adaptation is implemented as the output of a stable filter using the squared norm of the
measured output estimation error and the mismatch between each estimate and its saturated value.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Homogeneity and homogeneous approximations have been in-
vestigated by many authors for the stability analysis of an equi-
librium point: see e.g. the first contributions Massera (1956) and,
more recently, Kawski (1989) and Rosier (1998). The homogene-
ity property has been exploited in the design of global state ob-
servers (Andrieu, Praly, & Astolfi, 2008; Qian, 2005; Qian & Lin,
2006; Yang & Lin, 2003): the idea is to design a state observer for
the homogeneous approximation of the system and convergence
to zero of the estimation error is preserved under any perturba-
tion which does not change the homogeneous approximation. The
class of systems for which an observer can be designed by domina-
tion techniques has been enlarged by adding dynamic gain adapta-
tion (Andrieu, Praly, & Astolfi, 2009; Astolfi & Praly, 2006; Bullinger
& Allgower, 1997; Khalil & Saberi, 1987; Lei, Wei, & Lin, 2005).
The class of homogeneous systems has been enlarged by intro-
ducing (incremental) homogeneity in the upper bound in Battilotti
(2014) and used together with gain adaptation and self-tuned sat-
urations for designing global observers in Battilotti (2015a) for sys-
tems with bounded trajectories. Homogeneity in the upper bound
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gives enough a general framework for including triangular struc-
tures (feedback and feedforward systems), homogeneous and in-
terlaced structures. Self-tuned saturations were previously used in
Lei et al. (2005) in the observer design for feedback-linearizable
systems with bounded trajectories. However, the gain adaptation
is such that the dynamically adapted gain is non-decreasing along
solutions. As known, this may lead to serious growth problems in
the presence of measurement disturbance (Egardt, 1979, Exam-
ple 4.2; Khalil & Saberi, 1987; Mareels, 1984; Peterson & Naren-
dra, 1982). This problem has been addressed by several authors
(Egardt, 1979; Ioannou & Kokotovic, 1984; Mareels, 1984; Peter-
son &Narendra, 1982), trying to reduce the adapted gain instead to
let it growwith no bound, for example when the measured output
estimation error is decreasing. In Vasilijevic and Khalil (2006) it is
shown that measurement disturbance introduces an upper bound
on the gain when good estimation performances are required. In
this direction,we find theworks of Ahrens andKhalil (2006),which
relies on the knowledge of a bound for the nonlinearities of the sys-
tem, and Boizot, Busvelle, and Gauthier (2010), which relies on the
knowledge of a bound for the dynamic gain and the Lipschitz con-
stant of the nonlinearities of the system. The effect ofmeasurement
disturbance on observer design has been studied, following Boizot
et al. (2010), for a class of lower triangular systems with bounded
trajectories and for a given class of observers in Sanfelice and Praly
(2011), satisfying additional properties on the mismatch between
the vector fields of the system and of the observer, by proving an
upper bound (depending on the measurement noise) for the esti-
mation error in the mean and an upper bound on the limsup of the
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estimation error in themean. In the absence ofmeasurement noise,
this last bound can be made arbitrarily small by setting properly
the parameters of the class of observers. This, however, does not
discard a potential oscillatory behavior of the estimates (Mareels,
Van Gils, Polderman, & Ilchmann, 1999).

In this paper, we prove new results on robust observer design
in the presence of measurement disturbance for systems with
bounded trajectories by using incremental homogeneity in the
upper bound (Battilotti, 2014) and gain adaptation (Andrieu et al.,
2008; Bullinger & Allgower, 1997; Khalil & Saberi, 1987; Lei
et al., 2005) with saturated estimates and dynamically tuned
saturation levels (Lei et al., 2005). A state observer is designed by
dominating the incrementally homogeneous (in the upper bound)
nonlinearities of the observation error system with its linear
approximation. The gain adaptation and updating of the saturation
levels is implemented through a stable filter which regulates
its output by using a suitable function of the squared norm of
the measured output estimation error. Our observer guarantees
an upper bound on the limsup of the norm of the estimation
error depending on the limsup of the norm of the measurement
noise. As a particular case, if the measurement disturbance
tends asymptotically to zero the estimation error itself tends to
zero.

The paper is organized as follows. In Section 2 some notation
is introduced. In Section 3 the class of system is described and
the problem is formulated. In Section 4 an observer is presented
together with the main result and the parameter observer design
is discussed in Section 4.1. In Section 4.2 example and simulation
are given and in Section 4.3 the main result is proved. In the
Appendix the notion of incremental generalized homogeneity is
shortly recalled together with some of its properties and related
results.

2. Notation

(N1) Rn (resp. Rn×n) is the set of n-dimensional real column
vectors (resp. n × n matrices). R> (resp. Rn

>, Rn×n
> ) denotes

the set of real non-negative numbers (resp. vectors in Rn,
matrices in Rn×n, with real non-negative entries). R> (resp.
Rn
>) denotes the set of real positive numbers (resp. vectors in

Rn with real positive entries). λmin(A) (resp. λmax(A)) denotes
the minimum (resp. maximum) eigenvalue of A ∈ Rn×n.

(N2) For anymatrix V ∈ Rp×n wedenote by Vij the (i, j)-th entry of
V and for any vector v ∈ Rn wedenote by vi the ith element of
v. We retain a similar notation for functions. For any v ∈ Rn

we denote by diag{v} the diagonal n×nmatrixwith diagonal
elements v1, . . . , vn. Also, |a| denotes the absolute value of
a ∈ R, ∥a∥ (resp. ∥a∥P ) denotes the euclidean (resp. weighted
by P) norm of a ∈ Rn, ∥A∥ denotes the norm of A ∈ Rn×n

induced from the euclidean norm ∥ · ∥ and ⟨⟨a⟩⟩ the column
vector of the absolute values of the elements of a ∈ Rn,
i.e. ⟨⟨a⟩⟩ := (|a1| · · · |an|)T .

(N3) We denote by Cj(X ,Y ), with j > 0, X ⊂ Rn and Y ⊂

Rp, the set of j-times continuously differentiable functions
f : X → Y , C0

0(X ,Y ) the set of uniformly continuous
functions f : X → Y , by L∞(R>,Y ) the set of functions
f ∈ C0(R>,Y ) such that supθ>0 ∥f (θ)∥ < +∞ and by
Lj(R>,Y ), with j > 1, the set of f ∈ C0(R>,Y ) such that

∞

0 ∥f (θ)∥jdθ < +∞. For each d ∈ L∞(R>,Y ), we have the
sup norm of d defined as ∥d∥∞ := supt>0 ∥d(t)∥. Moreover,
K0 denotes the set of functions f ∈ C0(R>,R>), strictly in-
creasing with f (0) > 0 and K denotes the set of functions
f ∈ K0 such that f (0) = 0.

(N4) A saturation function sath(·) with levels h ∈ Rn
> is a func-

tion sath(x) := (sath1(x1), . . . , sathn(xn))
T such that for each

i = 1, . . . , n and xi ∈ R:

sathi(xi)

xi |xi| 6 hi
sign(xi)hi otherwise. (1)

(N5) For any vectors x ∈ Rn, r ∈ Rn
> and ϵ ∈ R>, we define

ϵr
:= (ϵr1 , . . . , ϵrn)T , ϵr

� x := (ϵr1x1, . . . , ϵrnxn)T (2)

viz. ϵr
� x is the dilation of a vector xwith weights r. Note that

for any x, y ∈ Rn, r1, r2 ∈ Rn
> and ϵ ∈ R>

ϵr1 � ϵr2 � x = ϵr2 � ϵr1 � x = ϵr1+r2 � x, (3)
(ϵr1 � x)T (ϵr2 � y) = (ϵr2 � x)T (ϵr1 � y)

= (ϵr1+r2 � x)Ty = xT (ϵr1+r2 � y) (4)

(N6) for any vectors x, y ∈ Rn we write x ≼ y if and only if xi 6 yi
for all i = 1, . . . , n. We retain the same notation for ma-
trices A, B ∈ Rn×n: A ≼ B if and only if Aij 6 Bij for all
i, j = 1, . . . , n. On the other hand A > B (resp. A > B) for
matrices A, B ∈ Rn×n if and only if A − B is positive semidef-
inite (resp. positive definite).

3. Main assumptions and problem statement

Consider the system

ẋ = f (x) := [A + BF + HC]x + φ(x), (5)
y = h(x, d) := Cx + ψ(x)+ d (6)

with state x ∈ Rn, measurement y ∈ R and disturbance d ∈ R. The
triple (A, B, C) is in prime form:

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
... · · ·

...
0 0 0 · · · 1
0 0 0 · · · 0

 , B =


0
0
...
0
1

 , (7)

C =

1 0 · · · 0 0


(8)

with F ∈ R1×n and H ∈ Rn×1. Moreover, φ and ψ are locally
Lipschitz continuous with φ(0) = 0, ψ(0) = 0, ∂φ

∂x (0) = 0
and ∂ψ

∂x (0) = 0 so that ẋ = [A + BF + HC]x, y = Cx + d,
represents the linear approximation of (5)–(6) around the origin.
Motivations for considering ẋ = [A + BF + HC]x, y = Cx + d
as the linear approximation of (5)–(6) around the origin rely in
the fact that any linear single-output system is equivalent under
coordinate transformations to ẋ1 = (A+BF1+H1C)x1+BF2x2, ẋ2 =

H2Cx1+Gx2, y = Cx1 where (A, B, C) is in prime form and ẋ2 = Gx2
is the zero-dynamics. Therefore, for simplicity and to focus onmain
results we are neglecting in (5)–(6) the zero dynamics of its linear
approximation around the origin.We can also assumewithout loss
of generality that BTH = 0.

We consider in (5)–(6) the class D(∆) of disturbances d ∈

L∞(R>,R) such that ∥d∥∞ 6 ∆ and uniformly continuous on their
domain. The problem is to give an estimate of the state of (5) using
only the noisy measurement (6). Our assumptions on the class of
systems (5)–(6) are the following ones (see the Appendix for few
recalls on incremental homogeneity in the upper bound which we
will abbreviate as i.h.u.b. throughout the paper):

(H0) (incremental homogeneity)
(i) CTψ and AT (φ + HC) are incrementally homogeneous

in the upper bound (i.h.u.b.) with quadruples (r, r −

g, g, CTψU) and, respectively, (r, r−g, g, AT (φU +HUC)),
with φU(0, 0) = 0 and ψU(0, 0) = 0 for some HU ∈

Rn×1,
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