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a b s t r a c t

This paper proposes a Distributed Model Predictive Control (DMPC) approach for a family of discrete-
time linear systems with local (uncoupled) and global (coupled) constraints. The proposed approach is
based on the dual problem of a MPC optimization problem involving all systems. This dual problem is
then distributedly solved, based on the Alternating Direction Multiplier Method (ADMM) with several
known simplifications. When the network of systems is large or sparsely connected, the computation
of the optimal control using ADMM can be expensive. The proposed approach mitigates this problem
by allowing early termination of the ADMM process. This is made possible via a finite-time consensus
algorithm that determines the satisfaction of the termination condition and by appropriate tightening of
the coupled constraints. Under reasonable assumptions, the approach is guaranteed to converge to a small
neighborhood of the optimal so long as the network is connected. Recursive feasibility and exponential
stability of the closed-loop systemare shown. The performance of the proposed approach is demonstrated
by a numerical example.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

This paper considers the Distributed Model Predictive Control
(DMPC) of M discrete-time linear dynamical systems, each of
which is of the form

xi(t + 1) = Aixi(t)+ Biui(t), (1)

xi(t) ∈ X i, ui(t) ∈ U i, i = 1, . . . ,M (2)

and all of them have to satisfy a coupled/global constraint of the
form
M
i=1


Ψ i

xx
i(t)+ Ψ i

uu
i(t)

≤ 1p, for all t (3)

where xi, ui are the states and controls of the ith system, respec-
tively, and X i

⊂ Rni ,U i
⊂ Rmi are the corresponding constraint
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sets; the matrices Ψ i
x ∈ Rp×ni and Ψ i

u ∈ Rp×mi define the coupled
constraints for all M systems and 1p is the p-vector of all ones.

The study of DMPC is an active area of research (Christofides,
Scattolini, Peña, & Liu, 2013; Keviczky, Borrelli, & Balas, 2006;
Maestre & Negenborn, 2014; Scattolini, 2009; Wang & Ong, 2010)
and one popular area is when the systems are dynamically cou-
pled (Conte, Voellmy, Zeilinger, Morari, & Jones, 2012; Farina &
Scattolini, 2012; Riverso, Farina, & Ferrari-Trecate, 2013; Riverso
& Ferrari-Trecate, 2012; Summers & Lygeros, 2012; Wang & Ong,
2016b). However, these approaches are not suitable for the prob-
lem above due to the complications arising from (3). To the best of
our knowledge, DMPC approaches for (1)–(3) are somewhat lim-
ited. The method of Richards and How (2007) ensures the satis-
faction of (3) using a sequential process: one system is optimized
at a time while all others stay constant; this is followed sequen-
tially by another system so that all M systems are optimized once
in M time steps. Another approach is known as the cooperative
MPC method (Trodden, 2014; Trodden & Richards, 2010, 2013).
While specific details vary, the basic idea is that all systems within
a cooperating set (possibly a singleton) are optimized jointly (or in
parallel) while systems outside the cooperating set follow their
predicted states and predicted controls. These methods optimize
individual or groups of systems sequentially. However, the opti-
mality of the overall system is unclear as they are not explicitly
pursued. In addition, these approaches require direct communica-
tions among all systems that are coupled by (3) which, even for a
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system of moderate size, is a strong requirement (Halvgaard, Van-
denberghe, Poulsen, Madsen, & Jorgensen, 2016; Low & Lapsley,
1999; Spudić, Conte, Baotić, & Morari, 2015).

A reasonable approach for (1)–(3) (Bertsekas, 1999; Bertsekas
& Tsitsiklis, 1997) that achieves overall optimality is to solve the
dual problem involving the Lagrangian function. In this case, the
Lagrangian function is the sum ofM separable functions except for
the dual variable associated with (3). This dual variable is treated
as a consensus variable in a distributed consensus optimization
problem (DCOP). Typically, consensus of the dual variable is
ensured (Chapter 6 of Bertsekas, 1999) using a central/master
node.

This work follows the above formulation resulting in a DCOP.
However, the DCOP is solved using the Distributed ADMM
algorithm where each system has a local copy of the dual variable.
The choice of ADMM is motivated by its reported nice numerical
properties (Boyd, Parikh, Chu, Peleato, & Eckstein, 2011), various
simplifications (Chang, Hong, & Wang, 2015; Mota, Xavier, Aguiar,
& Püschel, 2012, 2013; Wei & Ozdaglar, 2012) and its preference
as a solver for distributed system in many applications (Boyd
et al., 2011). The local copies of the dual variable need not reach
consensus but only within some fixed bound of one another.
Such an approach is used because the computational effort of
the Distributed ADMM can be high and allowing premature
termination of the ADMM algorithm provides for computational
expediency. Measures to handle such premature termination are
provided, together with recursive feasibility and stability of the
closed-loop system. Under reasonable assumptions, the approach
is guaranteed to converge to some small neighborhood of the
overall optimal solution so long as the network is connected. The
approach is iterative, similar to other MPC schemes (Necoara &
Nedelcu, 2014; Patrinos & Bemporad, 2014; Rubagotti, Patrinos,
& Bemporad, 2014) but for multiple systems with coupled
constraints.

The rest of this paper is organized as follows. This section ends
with a description of the notations used. Section 2 reviews some
results of the standard stand-alone MPC for a single system and
discusses the formulation of the overall MPC problem. Section 3
presents the proposed approach, including the discussion of the
coupled constraint, its dual and the convergence of the distributed
ADMM algorithm. The recursive feasibility and stability results are
given in Section 5. The performance of the approach is illustrated
by a numerical example in Section 6 with the conclusions given in
Section 7. All proofs are given in the Appendices.

The notations used in this paper are as follows. Non-negative
and positive integer sets are indicated by Z+0 and Z+, respectively.
Let M, L ∈ Z+0 with M ≥ L. Then, ZM

:= {1, 2, . . . ,M} and
ZM
L := {L, L+ 1, . . . ,M}. Similarly, R+0 and R+ refer, respectively,

to the sets of non-negative and positive real number. In is the n×n
identity matrix, 1n is the n-column vector of all ones (subscript
omitted when the dimension is clear) and |S| is the cardinality of
the index set S. Given σ > 0, X ⊂ Rn with 0 ∈ int(X) where
int(·) is the interior of a set, σX = {σ x : x ∈ X}. For a square
matrix Q , Q ≻ (≽)0 means Q is positive definite (semi-definite).
The ℓp-norm of x ∈ Rn is ∥x∥p while ∥x∥2Q = xTQx for Q ≻ 0.
Several representations of the states and controls are needed: xi(t),
ui(t) refer to the state and control of the ith system at time t; xik, u

i
k

are the kth predicted state and predicted control of the ith system;
x = (x1, x2, . . . , xM), u = (u1, u2, . . . , uM) are the collections
of xi and ui over the M systems; boldface xi = (xi1, x

i
2, . . . , x

i
N),

ui
= (ui

0, u
i
1, . . . , u

i
N−1) are, respectively, the collections of the N

predicted states and predicted controls over the horizon (of length
N) for the ith system; in situation where the reference to time is
needed, xik, u

i
k can be written as xik|t and ui

k|t . Hence, x
i
0|t = xi(t) and

ui
0|t = ui(t). Additional notations are introduced as required in the

text.

2. Preliminaries and problem formulation

This section reviews some well-known results in standard
MPC and other related concepts. Consider a stand-alone system
represented by one choice of i ∈ ZM in (1) under a standard MPC
setting of

min
ui

J i(xi, ui) :=

N−1
ℓ=0

(∥xiℓ∥
2
Q i + ∥ui

ℓ∥
2
Ri)+ ∥x

i
N∥

2
P i (4a)

s.t. ui
∈ Ui

T (x
i) (4b)

where N is the horizon length, ui
:= {ui

0, u
i
1, . . . , u

i
N−1}, x

i
:= {xi0,

xi1, . . . , x
i
N} are the predicted controls and predicted states, respec-

tively, satisfying xiℓ+1 = Aixiℓ + Biui
ℓ with xi0 = xi, J(xi, ui) is the

standard quadratic costs parameterized by (xi, ui) defined by (4a)
and

Ui
T (x

i) : = {ui
∈ RmiN : xiℓ+1 = Aixiℓ + Biui

ℓ,

xi0 = xi, xiℓ ∈ X i, ui
ℓ ∈ U i, xiN ∈ T i

f , ℓ ∈ ZN−1
0 } (5)

where T i
f is some appropriate terminal set satisfying

Ai
K x

i
∈ T i

f , K ixi ∈ U i for all xi ∈ T i
f (6)

with Ai
K := Ai

+ BiK i and K i, P i are the solutions to the Algebraic
Riccati Equation (ARE) with weights Q i

≻ 0, Ri
≻ 0. The overall

MPC optimization problem over the M systems incorporating (3)
at state x = {x1, . . . , xM} is

P(x) : V (x) := min
{ui,i∈ZM }

M
i=1

J i(xi, ui) (7a)

s.t. ui
∈ Ui

T (x
i), ∀i ∈ ZM , (7b)

M
i=1

Ψ i
xx

i
ℓ + Ψ i

uu
i
ℓ ≤ 1p, ∀ℓ ∈ ZN−1

0 (7c)

where (7c) refers to the satisfaction of the coupled constraints at
each predicted time step of the horizon. The conditions of (6) on T i

f
do not include the effect of the coupled constraint which is given
by
M
i=1

Ψ̄ ixi :=
M
i=1

(Ψ i
x + Ψ i

uK
i)xi ≤ 1p, ∀ xi ∈ T i

f . (8)

2.1. Tightening the constraints

The formulation of (7) and the condition of (8) are appropriate
when the Distributed ADMM algorithm achieves convergence
at every time step. However, the online verification of the
convergence of a distributed algorithm is numerically expensive.
The approach adopted here is to allow premature termination
of the Distributed ADMM algorithm up to a certain ϵ tolerance,
enforced as a stopping criteria for the algorithm. Correspondingly,
(7) and (8) need to be tightened to account for this tolerance.
Specifically, the tightened constraints for (7c) and (8) are
M
i=1

Ψ i
xx

i
ℓ + Ψ i

uu
i
ℓ ≤ (1− ϵM(ℓ+ 1))1p, ∀ℓ ∈ ZN−1

0 (9)

M
i=1

Ψ̄ ixi ≤ (1−MNϵ)1p, ∀xi ∈ T i
f . (10)

Obviously, the choice of ϵ has to satisfy 0 < ϵ < 1
MN to ensure

that 0 ∈ int(T i
f ) in (10). Note that the local constraints of (7b)
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