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a b s t r a c t

As a powerful method of solving the nonlinear optimal control problem, the iterative adaptive dynamic
programming (IADP) is usually established on the known controlled system model and is particular
for affine nonlinear systems. Since most nonlinear systems are complicated to establish accurate
mathematical models, this paper provides a novel data-based approximate optimal control algorithm,
named iterative neural dynamic programming (INDP) for affine andnon-affine nonlinear systems by using
system data rather than accurate systemmodels. The INDP strategy is built within the framework of IADP,
where the convergence guarantee of the iteration is provided. The INDP algorithm is implemented based
on the model-based heuristic dynamic programming (HDP) structure, where model, action and critic
neural networks are employed to approximate the system dynamics, the control law and the iterative
cost function, respectively. During the back-propagation of action and critic networks, the approach of
directly minimizing the iterative cost function is developed to eliminate the requirement of establishing
systemmodels. The neural network implementation of the INDP algorithm is presented in detail and the
associated stability is also analyzed. Simulation studies are conducted on affine and non-affine nonlinear
systems, and further on the manipulator system, where all results have demonstrated the effectiveness
of the proposed data-based approximate optimal control method.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Since nonlinear systems are widely existed in most industrial
fields, the optimal control problem of nonlinear systems has at-
tracted great attention in recent several decades. The nonlinear
optimal control problem is usually formulated as coping with the
nonlinear Hamilton–Jacobi–Bellman (HJB) equation, which is of-
ten difficult to be solved (Bellman, 1957; Lewis & Syrmos, 1995; Si,
Barto, Powell, & Wunsch, 2004). As is known to all, when the op-
timal control problem of linear systems is studied, the linear HJB
equation can be evolved as the algebraic Riccati equation. The fa-
mous iterative solution strategy was proposed by converting the
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algebraic Riccati equation to a series of linear Lyapunov equations
(Kleinman, 1968). Along this direction, the iterative solution strat-
egy was extended to solve the approximate optimal control of a
trainable manipulator in Saridis and Lee (1979). However, this it-
erative solution method only fits this kind of HJB equations that
are linear partial differential equations. Motivated by these suc-
cess, there has been a great deal of research developed to approx-
imately solve the HJB equation with the great improvement of
intelligent computation (Beard, Saridis, & Wen, 1997; Mu, Sun,
Song, & Yu, 2016; Si et al., 2004; Wang, Liu, Wei, Zhao, & Jin,
2012; Werbos, 1992). In Werbos (1992), an adaptive/approximate
dynamic programming (ADP) algorithm was proposed to ap-
proximately solve optimal control problems in forward time by
involving neural networks for function approximation. The gen-
eralized HJB equation was formulated to solve the optimal con-
trol problem from a view of successive approximation (Beard
et al., 1997). For continuous-time nonlinear systems, a nearly
constrained-optimal state feedback control method using a neural
network HJB approach was given in Abu-Khalaf and Lewis (2004),
and was extended to synchronous policy iteration in Vamvoudakis
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and Lewis (2010). Simultaneously, for discrete-time nonlinear sys-
tems, the iterative adaptive dynamic programming (IADP) strategy
was improved to obtain the approximate solution of the nonlinear
HJB equations by using neural networks (Al-Tamimi, Lewis, & Abu-
Khalaf, 2008; Dierks, Thumati, & Jagannathan, 2009;Wang, Jin, Liu,
& Wei, 2011; Wang, Mu, & Liu, 2017; Zhang, Luo, & Liu, 2009). The
value-iteration-based ADP algorithm was developed with several
convergence results of both inner-loop and outer-loop iterations in
Heydari (2014). In addition, there are several latest developments
related to ADP, including approximation-error-based adaptive op-
timal control (Heydari, 2016), event-triggered optimal control de-
sign (Vamvoudakis, Mojoodi, & Ferraz, 2017; Wang, Mu, He, & Liu,
in press; Wang, Mu, Liu, & Ma, in press), ADP-based variable struc-
ture or switching control design (Fan & Yang, 2016; Heydari & Bal-
akrishnan, 2014b; Mu, Ni, Sun, & He, 2017), cooperative control of
multi-agent systems (Heydari & Balakrishnan, 2014a; Zhang, Liang,
Wang, & Feng, 2017), and so on.

In the industrial field, two prominent features are presented
with the technological innovation and progress. One is that more
and more real systems are facing the difficulty in establishing
process models to support the control design due to increasing
scales and complex operations. The other is that vast volume
of data is stored during the industrial process but does not get
used efficiently. Thus, the problem of data-based optimal control
for nonlinear systems is significant and challenging. Recently,
several data-based approximate optimal control approaches have
been reported. For example, an online direct heuristic dynamic
programming method was proposed by Si and Wang without
requiring the controlled system model (Si & Wang, 2001), or
was more specifically called neural dynamic programming (NDP),
which was further developed to the tracking control problem
of nonlinear systems (Yang, Liu, Wang, & Wei, 2014; Yang, Si,
Tsakalis, & Rodriguez, 2009). The data-based online policy iteration
approach was proposed to obtain adaptive optimal controllers for
continuous-time linear systems with unknown system dynamics
(Jiang & Jiang, 2012). A model-free approximate policy iteration
method was developed based on a least-square weight updating
for affine nonlinear continuous-time optimal control design (Luo,
Wu, Huang, & Liu, 2015). Based on the identification of neural
networks, a data-driven robust approximate optimal control was
designed for the tracking control of continuous-time general
nonlinear systems (Zhang, Cui, Zhang, & Luo, 2011). The robust
ADP was studies for the robust optimal control design for a class of
uncertain nonlinear systems (Jiang & Jiang, 2014). The approach of
goal representation adaptive dynamic programmingwas proposed
by adapting reinforcement signal (He, Ni, & Fu, 2012), which has
been applied to tracking control problem (Mu, Ni, Sun, & He, 2016),
maze navigation (Ni, He, Wen, & Xu, 2013) and power systems
(Tang, Mu, & He, 2016).

Compared with the NDP algorithm, this proposed method is an
off-line algorithmby integrating the cost function iteration and the
control law iteration into the NDP approach, while the NDP algo-
rithm is with the merit of online learning and control. Compared
with the iterative adaptive dynamic programming (IADP) method,
the proposed method has built the data-based learning control
framework by using a model network, while the IADP strategy is
usually established on the known controlled system model and
is particularly effective for affine nonlinear systems even a model
network is utilized in this method (Wang et al., 2012; Wang, Liu,
Zhang, & Zhao, 2016). The contribution of this paper is summarized
as follows. First, we propose the ε-optimal iterative ADP algorithm
based on a prescribed error bound, where the convergence of the
iterative algorithm as well as the equivalence of stopping crite-
rion is proved from the view of theoretical analysis. Second, the
INDP approach based on a HDP structure is developed to imple-
ment the data-based optimal control via estimating both the iter-
ative control law and the iterative cost function. The novel design

on the weight updating of the action neural network makes the
implementation can be operated by only using system data, which
has greatly improved the realization of the algorithm without in-
volving the accurate systemmodel. Third, by using a Lyapunov ap-
proach, the uniformly ultimately boundedness (UUB) stability is
provided for the INDP controller.

This paper is organized as follows. In Section 2, the optimal
control problem is formulated for general discrete-time nonlinear
systems. Section 3 presents the ε-optimal INDP algorithm and
the iteration convergence analysis. The implementation strategy
of INDP algorithm and the associated stability proof are provided
in Section 4. In Section 5, three simulation examples are given to
demonstrate the effectiveness of the proposed data-based INDP
approximate optimal control scheme. Finally, we summarize this
paper in Section 6.

2. Problem statement and preliminaries

In this paper, the studied discrete-time nonlinear systems are
generally described by

xt+1 = F(xt , ut), t = 0, 1, 2, . . . (1)

where xt = [x1t , x2t , . . . , xnt ]T ∈ Rn is the state vector at time
step t , and ut = [u1t , u2t , . . . , umt ]

T
∈ Rm is the control vector at

time step t . The system function F(xt , ut) is Lipschitz continuous
onΩx ⊆ Rn and F(0, 0) = 0.

Definition 1 (Werbos, 1992; Zhang et al., 2009). A nonlinear
dynamical system is said to be stabilizable on a compact setΩx ⊆

Rn, if for any initial condition x0 ∈ Ωx, there exists a control
sequence u0, u1, u2, . . . , ut ∈ Rm, such that the state xt → 0 as
t → ∞.

For the optimal control of discrete-time nonlinear system (1), it
is expected to obtain an optimal control law ut , which enables all
the states of system (1) to stabilize at the origin andminimizes the
following cost function J(xt),

J(xt) =

∞
k=t

βk−tR(xk, uk), (2)

where R(xk, uk) is the utility function, R(xk, uk) ≥ 0 for any xk
and uk, and R(0, 0) = 0. β is the discount factor with 0 < β ≤

1. Generally speaking, the utility function can be chosen as the
quadratic form of the states and the control variables, which is as
follows:

R(xk, uk) = xTkPxk + uT
kQuk, (3)

where P and Q are symmetric positive definite matrices with
appropriate dimensions.

A feedback control is used in this paper, such that ut =

u(xt). The admissible control is introduced for the optimal control
problem, which stabilizes system (1) at the origin and guarantees
that the total cost function (2) is finite.

Definition 2 (Prokhorov, Santiago, & Wunsch, 1995; Si et al.,
2004). A feedback control ut defined onΩx is said to be admissible
with respect to (2) if ut is continuous on a compact set Ωu ⊆

Rm, u(0) = 0, ut stabilizes system (1) on Ωx, and J(x0) is finite
∀x0 ∈ Ωx.

Note that the infinite-horizon cost function can be rewritten in a
recursive form, then Eq. (2) is rewritten as

J(xt) = xTt Pxt + uT
t Qut + β

∞
k=t+1

βk−t−1R(xk, uk)

= xTt Pxt + uT
t Qut + βJ(xt+1). (4)
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