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a b s t r a c t

Thiswork dealswith output regulation inmultivariable hybrid systems featuring a continuous-time linear
dynamics periodically affected by instantaneous changes of the state.More precisely, given a hybrid linear
plant and a hybrid linear exogenous system, with periodic state jumps, the problem consists in finding
a hybrid feedback regulator, with the same characteristics, achieving global asymptotic stability of the
closed-loop dynamics and asymptotic tracking of the reference generated by the exogenous system for
all the initial states. Starting from a general, necessary and sufficient condition for the existence of a
solution, the discussion leads to a more specific, sufficient condition which outlines the computational
framework for a straightforward synthesis of the compensator. The internal model principle is shown to
hold in a more general formulation than the original one, adapted to the hybrid systems considered. A
numerical example is worked out with the aim of illustrating how to implement the devised technique.
The geometric approach is the key methodology in attaining these results.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Hybrid systems with state jumps are dynamical systems which
exhibit a continuous-time behavior (the so-called flow dynamics)
interrupted by state discontinuities (jump dynamics). These
dynamical systems have drawn an increasing amount of research
effort during the last decade, mainly because they are particularly
effective in representing the peculiar way some real systems,
occurring in various fields of science and engineering, operate (see,
e.g., Goebel, Sanfelice, & Teel, 2009, 2012). Indeed, many classes of
jump hybrid systems can be distinguished on the basis of several
characteristics, such as the flow and jump dynamics being linear or
nonlinear, the jumps being time driven or state driven, and so on.
Thus, the control synthesis raises a number of typical issues and
requires ad-hoc devisedmethodologies, depending on the features
of the hybrid systems addressed. In particular, this work is focused
on hybrid systemswith a continuous-time linear dynamics subject
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to periodic state jumps and investigates the output regulation
problem.

Output regulation is a classic problem of control theory and
it essentially consists in finding a feedback regulator which, for
a given plant and a given exogenous system, ensures stability of
the closed-loop dynamics and asymptotic tracking of the reference
generated by the exogenous system for all the initial states. A
less basic formulation of this problem (including decoupling of
a disturbance generated by the exogenous system and directly
affecting the plant) has been studied for scalar hybrid systems
with periodic state jumps in Marconi and Teel (2010, 2013) and
for multivariable hybrid systems of the same class in Carnevale,
Galeani, and Menini (2012a); Carnevale, Galeani, Menini, and
Sassano (2016); Carnevale, Galeani, and Sassano (2013).

The works by Carnevale et al. (2012a, 2016, 2013) – which,
referring to the multivariable case, are closer to this one – give
a necessary and sufficient condition for the existence of a solu-
tion to the considered problem in terms of solvability of a set of
differential linear matrix equations. This result is derived by elab-
orating further on the regulator equations that originally char-
acterized solvability of the output regulation problem for linear
time-invariant systems (Francis, 1977). In principle, the hybrid reg-
ulator can be obtained by solving the so-called hybrid regulator
equations (Carnevale et al., 2016, Section III). However, as acknowl-
edged by the same authors (Carnevale et al., 2016, Remark 2), this
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method presents serious difficulties due to the infinite number of
constraints implied in such equations. For this reason, the analy-
sis is deepened so as to define a viable, valid in general, synthesis
procedure, based on the solution of two finite-dimensional Francis
equations, which are algebraic matrix equations (Carnevale et al.,
2016, Section IV-C).

In this work, the output regulation problem for multivariable
hybrid systems with periodic state jumps is considered from a dif-
ferent perspective. Namely, new solvability conditions are derived
by employing themethodologies of the geometric approach (Basile
& Marro, 1992; Wonham, 1985). More specifically, the results pre-
sented herein are obtained by exploiting the geometric interpreta-
tion of the output regulation problem that was first developed by
Marro (1996) and that has lately inspired the solution of the same
problem for more complex dynamical systems, such as linear pa-
rameter varying systems (Zattoni, 2008), linear time-delay systems
(Conte, Perdon, & Zattoni, 2012), and linear switching systems (Zat-
toni, Perdon, & Conte, 2013). This methodology requires that some
fundamental concepts of the geometric approach (e.g., invariance
and controlled invariance) be generalized to hybrid systems with
state jumps. Indeed, some of these notions have proven to be in-
strumental in analyzing the structure of the considered hybrid sys-
tems in Medina (2007); Medina and Lawrence (2009) and, to some
extent, in Carnevale, Galeani, Menini, and Sassano (2014a). How-
ever, in this work, as in Perdon, Conte, and Zattoni (2015); Perdon,
Zattoni, and Conte (2016), structural notions are used in combina-
tion with qualitative notions such as stability, thus allowing all the
aspects of the problem to be handled in the geometric framework.

A main contribution of this work is establishing a new neces-
sary and sufficient condition for problem solvability in strict geo-
metric terms (Theorem 1). The geometric necessary and sufficient
condition is perfectly consistent with the necessary and sufficient
condition based on the hybrid regulator equations of Carnevale
et al. (2016, Proposition 3), aswill be explained in Remark 1.Mean-
while, the geometric condition has the merit of giving insight into
the way the overall regulated system works, since, in particular, it
points out the subspace of the admissible state motions. However,
the necessary and sufficient geometric condition cannot be di-
rectly used as a design tool, since, referring to the overall compen-
sated system, it involves the feedback regulator. Nonetheless, the
geometric condition can be exploited to derive amore specific, suf-
ficient solvability condition which provides particularly straight-
forward synthesis tools (although not applicable to the whole
generality of solvable problems).

Hence, the subsequent contribution of this work is a geomet-
ric sufficient condition for problem solvability, solely involving the
problem data (Theorem 2). In fact, such sufficient condition is cen-
tered on the output-difference connection between the plant and
the exogenous system (the so-called hybrid extended system) and
requires the existence of a subspace with the property of being
both controlled invariant for the flow dynamics and invariant for
the jump dynamics (in addition to that of being contained in the
kernel of the output map). Indeed, such sufficient condition may
be rather conservative, a main reason being that it respectively de-
mands controlled invariance and invariance under the linear maps
of the flow and jump dynamics (i.e., hybrid controlled invariance)
instead of a combination of the two. On the positive side, since
such condition disregards the time period between two consecu-
tive state jumps, it ensures the existence of a solution for any finite
time period. Further, under such condition, the compensator syn-
thesis is extremely simple. In fact, as will be shown in the proof of
the theorem, the synthesis procedure amounts to the computation
of a stabilizing friend for the resolving hybrid controlled invariant
subspace and of a stabilizing output injection for the dynamics of
the hybrid extended system.

In order to shed light on the conflict between conservativeness
and constructiveness of the considered conditions, another suffi-
cient condition for problem solvability is established (Theorem 3).
Actually, Theorem 3 is focused on the dynamics obtained as the
combination over one period of the flow and jump dynamics of
the hybrid output-difference system and, as such, has a broader
scope compared to Theorem2. Namely, the condition of Theorem3
implies that of Theorem 2, while the converse is not true in gen-
eral, as will be made clear in Remark 5. Nevertheless, it is worth
noting that the flow dynamics combined with the jump dynam-
ics in the statement of Theorem 3 is assumed to be compensated
by state feedback, so as to take into account the available control
input in the way compatible with the compensation scheme con-
sidered in the general necessary and sufficient condition. Thus, the
interplay between such unknown state feedback and the unknown
controlled invariant subspace, which has the role of resolving sub-
space, makes the condition of Theorem 3 difficult to ascertain and
nonconstructive.

As mentioned above, the compensator synthesis performed
according to the proof of Theorem2 presupposes that the resolving
hybrid controlled invariant subspace be known. However, the
geometric sufficient condition does not contain any hint on how
to compute such subspace. Hence, in order to provide a complete
synthesis tool for the whole set of problems whose solvability
is ensured by Theorem 2, a necessary and sufficient constructive
condition for a hybrid controlled invariant subspace to satisfy the
requisites of Theorem 2 is established in Theorem 4.

The paper is organized as follows. In Section 2, the output
regulation problem for multivariable hybrid linear systems with
periodic state jumps is presented. In Section 3, a necessary
and sufficient condition for problem solvability, referring to
the overall compensated hybrid system, is stated in geometric
terms. A geometric sufficient condition, focused on the hybrid
extended system, is proven in Section 4. In the same section, a
more extensive, yet nonconstructive, sufficient condition is also
discussed. A necessary and sufficient condition for the existence of
a subspace fulfilling the requirements of the constructive sufficient
condition is shown in Section 5. A numerical example illustrating
how to implement the devised synthesis procedure is worked
out in Section 6. Section 7 contains the conclusions. Appendix
discusses some results on the stabilization of a hybrid dynamics
via a state feedback or via an output injection, each one acting on
the flow dynamics only.

Notation: The symbols Z, Z+

0 , Z+, R, R+

0 , R+, and C stand for
the sets of integer numbers, nonnegative integer numbers, pos-
itive integer numbers, real numbers, nonnegative real numbers,
positive real numbers, and complex numbers, respectively. The
symbol i stands for the imaginary unit and, given a complex num-
ber λ = λa + iλb, |λ| denotes its modulus and Arg (λ) its ar-
gument. Matrices and linear maps are denoted by slanted capital
letters, like A. The image, the kernel, the inverse, and the transpose
of A are denoted by Im A, Ker A, A−1, and A⊤, respectively. Vec-
tor spaces and subspaces are denoted by calligraphic letters, like
V . The notation W/V stands for the quotient space of a subspace
W ⊆ X over a subspace V ⊆ W . The expression V ⊕ W = X
stands for V + W = X and V ∩ W = {0}. The symbol A|J de-
notes the restriction of a linear map A to an A-invariant subspace
J, while A|X/J denotes themap induced by A on the quotient space
X/J. The symbol ∥x∥, where x ∈ Rn, denotes the 2-norm of x,
while ∥A∥, where A ∈ Rm×n, denotes the norm induced on A by
the vector 2-norm: i.e., ∥A∥ = supx∈Rn, x≠0 (∥A x∥/∥x∥). Moreover,
∥A∥F denotes the Frobenius norm of A (i.e., the square root of the
sum of the squares of all entries). The symbols In and 0m×n denote
an identity matrix of dimension n and an (m × n)-zero matrix
(subscripts are omitted when the size is clear from the context).
The symbol diag {d1, . . . , dn} denotes a diagonal matrix with the
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