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a b s t r a c t

In this paper, we consider the ranking and selection (R&S) problem with input uncertainty. It seeks to
maximize the probability of correct selection (PCS) for the best design under a fixed simulation budget,
where each design is measured by their worst-case performance. To simplify the complexity of PCS,
we develop an approximated probability measure and derive an asymptotically optimal solution of the
resulting problem. An efficient selection procedure is then designedwithin the optimal computing budget
allocation (OCBA) framework. More importantly, we provide some useful insights on characterizing an
efficient robust selection rule and how it can be achieved by adjusting the simulation budgets allocated
to each scenario.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Many problems in control engineering involve large-scale
discrete-event dynamic systems. Since these systems are usually
too complex to be described by succinct mathematical models,
stochastic simulation has been a popular choice for analyzing these
systems. However, due to slow convergence, simulation efficiency
is a major concern, especially when the number of competing
designs to be compared is large. This explains the increasing
popularity of research in ranking and selection (R&S): techniques
that determine the number of simulation replications for each
design alternative such that the selectionquality for the best design
is optimized or guaranteed at a pre-specified level.
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There are two primary approaches for R&S problems: indiff-
erence-zone (IZ) and optimal computing budget allocation (OCBA).
The IZ approach aims to provide a guarantee for the selection
quality, assuming that the mean performance of the best design is
at least δ∗ better than each alternative, where δ∗ is the minimum
difference worth detecting (Kim & Nelson, 2001). The OCBA
approach allocates the samples sequentially in order to optimize
the selection quality under a simulation budget constraint (Chen,
Lin, Yücesan, & Chick, 2000; Gao&Chen, 2015, in press-b). The high
efficiency of the OCBAmethod has been demonstrated via a variety
of numerical experiments (Branke, Chick, & Schmidt, 2007; Chen,
Gao, Chen, & Shi, 2014).

An implicit assumption for the abovementioned R&S proce-
dures is that the true input distributions and their parameters are
known, while in practice, they are typically unknown and have to
be estimated from limited historical data. The finiteness of histor-
ical data leads to uncertainty in the estimated input distributions
and their parameters, which might (severely) affect the quality of
the selection in R&S procedures.

In view of the importance of this issue, Corlu and Biller (2013)
developed a subset selection procedure that accounts for the input
uncertainty. Fan, Hong, and Zhang (2013) presented a robust
IZ-based R&S formulation that selects the best design with
respect to the worst-case choices among a finite collection of
possible input models, called robust selection of the best (RSB).
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This issue is also related to two streams of literature. The first
is input uncertainty quantification, which quantifies the impact
of input uncertainty on the simulation output (Barton, Nelson,
& Xie, 2014; Song, Nelson, & Pegden, 2014). The other is robust
optimization (RO) (Ben-Tal, den Hertog, Waegenaere, Melenberg,
& Rennen, 2013; Delage & Ye, 2010). Different from simulation-
based optimization in which targeted problems do not have nice
structures to be exploited, RO often requires the optimization
problems to be available explicitly in closed form.

In this research, we utilize the OCBA approach and develop
a new and efficient procedure for R&S problems with input
uncertainty. To the best of our knowledge, it is the first OCBA-
based procedure for R&S problems with input uncertainty. The
uncertainty set is assumed to contain a finite number of scenarios
for the underlying input distributions and parameters. The
selection problem is formulated as maximizing the probability of
correctly selecting the best design under a fixed simulation budget,
where the performance of a design is measured by its worst-case
performance among all the possible scenarios in the uncertainty
set. When all the scenarios of each design and their means and
variances are known, we derive the asymptotic (as the simulation
budget goes to infinity) optimal solution for the selection problem
considered. A sequential selection algorithm, called R-OCBA
(robust OCBA), is designed which heuristically implements the
derived solution. The significantly higher efficiency of R-OCBA
is demonstrated via numerical tests. A preliminary study of this
problem has been presented without proof in Gao, Xiao, Zhou, and
Chen (2016).

The rest of the paper is organized as follows. Section 2 formu-
lates the selection problem with input uncertainty. Section 3 de-
rives the asymptotic optimal solution for the problem formulated
and develops a corresponding sequential selection procedure. Nu-
merical experiments are provided in Section 4, followed by conclu-
sions in Section 5.

2. Problem statement

In this section, we provide some notation and assumptions and
formulate the selection problem with input uncertainty.

2.1. Preliminaries

Essentially, we want to solve the following selection problem

min
x∈X

EP [h(x, ξ)], (1)

where the set of system designs (solutions) X = {x1, x2, . . . , xk}
is non-empty and finite. The performance measure function
EP [h(x, ξ)] has no analytical form and must be evaluated via
simulation. h(x, ξ) is some random estimate of the performance
of the system given a design x. ξ represents the random noise of
the system and follows an unknown distribution P .

In practice, the functional forms and the associated parameters
of distribution P are estimated from historical data, which leads
to uncertainty of P . To model this input uncertainty, we follow
Fan et al. (2013) and assume that for all the designs in X , the
set of possible distributions of ξ is identical and contains a finite
number of elements, denoted as P = {P1, P2, . . . , Pm}. We call
P the uncertainty set and an element in P a scenario. Note that
P incorporates the uncertainty from both the input distribution
and its associated parameters and h(x, ξ) is random given any
Pj ∈ P . In order to obtain a finite number of scenarios, we
can first identify a number of appropriate input distributions
from historical data and then discretize the possible ranges of the
associated parameters to establish P .

To facilitate our presentation, we call xi design i and Pj scenario
j with i ∈ {1, 2, . . . , k} and j ∈ {1, 2, . . . ,m}. We define the
following notation:

Xi,j,t : output of the tth simulation replication for scenario j of
design i, i ∈ {1, 2, . . . , k} and j ∈ {1, 2, . . . ,m};
µi,j: mean of Xi,j,t , i.e., µi,j = E[Xi,j,t ];
σ 2
i,j: variance of Xi,j,t , i.e., σ 2

i,j = Var[Xi,j,t ];
n: total number of simulation replications (budget);
ni,j: number of simulation replications allocated to scenario j of
design i;
αi,j: proportion of the total simulation budget allocated to
scenario j of design i;
X̄i,j: sample mean of scenario j of design i, i.e., X̄i,j =
1
ni,j

ni,j
t=1 Xi,j,t ;

S2i,j: sample variance of scenario j of design i, i.e., S2i,j =
1

ni,j−1

ni,j
t=1(Xi,j,t − X̄i,j)

2;
b: the true best design, b ∈ {1, 2, . . . , k};
δij,uv = µi,j − µu,v .

In this research, the performance of design i is measured by its
worst-case performance among them possible scenarios in P , i.e.,
maxj∈{1,2,...,m} µi,j, for all i ∈ {1, 2, . . . , k}. This is a common set-
ting to account for input uncertainty (e.g., Ghaoui, Oks, & Oustry,
2003; Gülpınar & Rustem, 2007). Since making decisions based on
the worst-case scenario can prevent potential high risk, this set-
ting is preferred by conservative decision makers. We assume that
for each design i ∈ {1, 2, . . . , k}, there exists scenario ji such that
µi,ji > µi,j for all j ∈ {1, 2, . . . ,m} and j ≠ ji, and there exists de-
sign i ∈ {1, 2, . . . , k} such thatµi,ji < µi′,ji′ for all i

′
∈ {1, 2, . . . , k}

and i′ ≠ i. This assumption ensures that the worst-case scenario of
each design and the true best design are uniquely defined. Tomake
the derivation more tractable, we further assume that the simula-
tion output samples for each scenario are normally distributed for
all the designs and are independent from replication to replication,
as well as independent across different designs and scenarios. That

is, Xi,j,t ∼ N(µi,j, σ
2
i,j) and X̄i,j ∼ N(µi,j,

σ 2
i,j

ni,j
).

2.2. Problem formulation

Given a fixed simulation budget, the best design cannot be
selected with certainty, and a common way to deal with this issue
is to allocate the simulation budget to maximize the probability
of correct selection (PCS), i.e., the probability of correctly selecting
the best design. With the performance of each design measured
by their worst-case performance, a correct selection occurs when
the observed worst-case scenario of the true best design b is better
than the observed worst-case scenarios of the other designs. Then,

PCS = P


max
j∈{1,...,m}

X̄b,j < min
l∈{1,...,k},l≠b

max
r∈{1,...,m}

X̄l,r


= P


k

l=1,l≠b

m
r=1

m
j=1

(X̄b,j ≤ X̄l,r)


. (2)

The selection problem is formulated as,

max
ni,j

PCS

s.t.
k

i=1

m
j=1

ni,j = n,

ni,j ≥ 0, i = 1, . . . , k, j = 1, . . . ,m. (3)

In this research, we ignore the minor technicalities associated
with ni,j’s not being integer. Amajor difficulty for solving (3) is that
the objective function PCS is computationally intractable using the
expression given in (2). To evaluate PCS in a relatively fast and
inexpensive way, we present an approximation for PCS using a
lower bound.
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