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a b s t r a c t

In this paper, a general framework is proposed for the analysis and characterization of observability and
diagnosability of finite state systems. Observability corresponds to the reconstruction of the system’s
discrete state, while diagnosability corresponds to the possibility of determining the past occurrence of
some particular states, for example faulty states. A unifying framework is proposed where observability
and diagnosability properties are defined with respect to a critical set, i.e. a set of discrete states
representing a set of faults, or more generally a set of interest. These properties are characterized and
the involved conditions provide an estimation of the delay required for the detection of a critical state,
of the precision of the delay estimation and of the duration of a possible initial transient where the
diagnosis is not possible or not required. Our framework makes it possible to precisely compare some
of the observability and diagnosability notions existing in the literature with the ones introduced in our
paper, and this comparison is presented.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Reconstructing the internal behavior of a dynamical system on
the basis of the available measurements is a central problem in
control theory. Starting from the seminal paper (Kalman, 1959),
state observability has been investigated both in the continuous
domain (see e.g. the fundamental papers Luenberger, 1971 for the
linear case and Griffith & Kumar, 1971 for the nonlinear case), in
the discrete state domain (see e.g. Ozveren & Willsky, 1990 and
Ramadge, 1986), andmore recently for hybrid systems (see e.g. the
special issue (De Santis, 2009) on observability and observer-
based control of hybrid systems and the references therein,
Babaali & Pappas, 2005; Balluchi, Benvenuti, Di Benedetto, &
Sangiovanni-Vincentelli, 2002; Balluchi, Benvenuti, Di Benedetto,
& Sangiovanni-Vincentelli, 2013; Bemporad, Ferrari-Trecate, &
Morari, 2000; Collins & van Schuppen, 2007; De Santis, Di
Benedetto, & Pola, 2003; Tanwani, Shim, & Liberzon, 2013; Vidal,
Chiuso, Soatto, & Sastry, 2003). In some references dealing with
discrete event systems, e.g. in Lafortune (2007), the notion of
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observability is related to state disambiguation, which is the
property of distinguishing unambiguously among certain pairs of
states in the state space. We will use here the term observability
in the traditional meaning used in Zaytoon and Lafortune (2013)
where observability corresponds to the reconstruction of the
system’s discrete state. Diagnosability, a property that is closely
related to observability but is more general, corresponds to the
possibility of detecting the occurrence of some particular state,
for example a faulty state, on the basis of the observations. An
excellent survey of recent advances on diagnosis methods for
discrete systems can be found in Zaytoon and Lafortune (2013). The
formal definition and analysis of observability and diagnosability
depend on the model, on the available output information, and
on the objective for which state reconstruction is needed, e.g. for
control purposes, for detection of critical situations, and for
diagnosis of past system evolutions. It is therefore hard, in general,
to understand the precise relationships that exist between the
different notions that exist in the literature.

In this paper, we propose a unifying framework where
observability and diagnosability are defined with respect to a
subset of the state space, called critical set. A state belonging to
the critical set is called critical state. This idea comes from safety
critical applications, e.g. Air Traffic Management (De Santis, Di
Benedetto, Di Gennaro, D’Innocenzo, & Pola, 2006; Di Benedetto,
Di Gennaro, & D’Innocenzo, 2005b), where the critical set of
discrete states represents dangerous situations that must be
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detected to avoid unsafe or even catastrophic behavior of the
system. However, the critical set can represent a set of faults, or
more generally any set of interest. We define and characterize
observability and diagnosability in a uniform set-membership-
based formalism. The set-membership formalism and the derived
algorithms are very simple and intuitive, and allow checking the
properties without constructing an observer, thereby avoiding the
exponential complexity of the observer design. The definitions of
observability and diagnosability are given in a general form that
is parametric with respect to the delay required for the detection
of a critical state, and the precision of the delay estimation. Using
the proposed conditions that characterize those properties, we can
check diagnosability of a critical event, such as a faulty event, and
at the same time compute the delay of the diagnosis with respect
to the occurrence of the event, the uncertainty about the time at
which that event occurred, and the duration of a possible initial
transientwhere the diagnosis is not possible or not required. These
evaluations are useful to better understand the characteristics of
the systemand can be used in the implementation of the diagnoser.

While in the literature on discrete event systems a transition-
based model is used, we adopt a state-based approach, similarly
to what was done in Lin (1994) where an on-line diagnosability
problem for a deterministic Moore automaton with partial state
observation was solved, in Hashtrudi Zad, Kwong, and Wonham
(1971) where the focus was on the complexity reduction in
the diagnoser design, and in Takai and Ushio (2012) where
verification of codiagnosability is performed. Because of the
different formalism used in the transition-based and state-based
approaches, a comparison between our definitions and those
existing in the literature on discrete event systems is very hard to
achieve without a unifying framework where the different notions
can all be formulated and compared. We show that, using our
formalism,we are able to understand the precise relationships that
exist between the properties we analyze and some of the many
diagnosability concepts that exist in the literature.

The paper is organized as follows. After introducing the main
definitions in Section 2, Section 3 is devoted to establishing
some geometrical tools that are instrumental in proving our
results. In Section 4, observability and diagnosability properties are
completely characterized. The proofs are omitted for space reason
and are available in De Santis and Di Benedetto (2016), where also
examples are provided to better understand our results. The proofs
of the main theorems are constructive and show how a diagnoser
can be determined.
Notations: The symbol Z denotes the set of nonnegative integer
numbers. For a, b ∈ Z, [a, b] = {x ∈ Z : a ≤ x ≤ b}.
For a set X , the symbol |X | denotes its cardinality. For a
set Y ⊂ X , where the symbol ⊂ has to be understood
as ‘‘subset’’, not necessarily strict, the symbol Y denotes the
complement of Y in X , i.e. Y = {x ∈ X : x ∉ Y }. For W ⊂

X × X , the symbol W− denotes the symmetric closure of W ,
i.e. W−

= {(x1, x2) : (x1, x2) ∈ W or (x2, x1) ∈ W }. The null
event is denoted by ϵ. For a string σ , |σ | denotes its length, σ(i),
i ∈ {1, 2, . . . , |σ |}, denotes the ith element, and |σ |[a,b] is the string
σ(a)σ (a+1) . . . σ (b). P (σ ) is the projection of the string σ , i.e. the
string obtained from σ by erasing the symbol ϵ (see e.g. Ramadge
& Wonham, 1989).

2. Diagnosability properties and their relationships

We consider a Finite State Machine (FSM)

M = (X, X0, Y ,H, ∆)

where X is the finite set of states; X0 ⊂ X is the set of initial states;
Y is the finite set of outputs; H : X → Y is the output function;
∆ ⊂ X × X is the transition relation.

For i ∈ X , define succ (i) = {j ∈ X : (i, j) ∈ ∆} and pre (i) =

{j ∈ X : (j, i) ∈ ∆}.
We make the following standard assumption:

Assumption 1 (Liveness). succ(i) ≠ ∅, ∀i ∈ X .

Any finite or infinite string x with symbols in X that satisfies
the condition x (1) ∈ X and x (k + 1) ∈ succ (x (k)) , k =

1, 2, . . . , |x| − 1 is called a state execution (or state trajectory or
state evolution) of the FSMM . The singleton {i ∈ X} is an execution.

Let X∗ be the set of all the state executions of M . Then, for a
given Ψ ⊂ X , we can define the following subsets of X∗:

– XΨ is the set of state executions x ∈ X∗ with x (1) ∈ Ψ

– XΨ ,∞ is the set of infinite state executions x ∈ X∗ with x (1) ∈

Ψ . For simplicity, the set XX0,∞ will be denoted by X

– XΨ is the set of finite state executions x ∈ X∗ with last symbol
in Ψ .

Obviously, XX = X∗ and XΨ ,∞⊂ XΨ ⊂ X∗.
LetY be the set of strings with symbols inY = {y ∈ Y : y ≠ ϵ}.

Define y : X∗
→ Y, the function that associates to a state

execution the corresponding output execution, as y (x) = P (σ )
where σ = H (x(1)) . . .H (x(n)) , n = |x| if |x| is finite. Otherwise
y (x) = P (σ∞) where σ∞ is an infinite string recursively defined
as σ1 = H (x(1)), σk+1 = σkH (x(k + 1)) , k = 1, 2, . . . . Finally,
y−1 (y (x)) =

x ∈ XX0 : y (x) = y (x)

, x ∈ XX0 .

We now propose a framework where observability and
diagnosability are defined with respect to a subset of the state
space Ω ⊂ X called critical set. The set Ω may represent unsafe
states, faulty states, or more generally any set of states of interest.

For a string x ∈ X, two cases are possible: x (k) ∉ Ω , ∀k ∈ Z
or x (k) ∈ Ω , for some k ∈ Z. If the second condition holds, let
kx be the minimum value of k such that x (k) ∈ Ω . Otherwise set
kx = ∞.

The next definition describes the capability of inferring, from
the output execution, that the state belongs to the set Ω , at some
step during the execution, after a finite transient or after a finite
delay or with some uncertainty in the determination of the step.
The precise meaning of the parameters used to describe those
characteristics will be discussed after the definition.

Definition 1. The FSM M is parametrically diagnosable with
respect to a set Ω ⊂ X (shortly parametrically Ω-diag) if
there exist τ and δ ∈ Z, and T ∈ Z ∪ {∞} such that
for any string x ∈ X with finite kx, whenever x (k) ∈ Ω

and k ∈ [max {kx, (τ + 1)} , kx + T ], it follows that for any
string x ∈ y−1


y

x|[1,k+δ]


, x (h) ∈ Ω , for some h ∈

[max {1, (k − γ1)} , k + γ2] and for some γ1, γ2 ∈ Z, γ2 ≤ δ.

If x (k) ∈ Ω for some k ∈ Z, in what follows the condition
x (k) ∈ Ω is called crossing event, and k is the step at which the
crossing event occurs.

The value γ = max {γ1, γ2} is the uncertainty radius in the
reconstruction of the step at which the crossing event occurred.
The parameter δ corresponds to the delay of the crossing event
detection while τ corresponds to an initial time interval where the
crossing event is not required to be detected.

The detection of the crossing event is required whenever it
occurs in the interval defined by the parameter T .

To better understand the role of these parameters, consider
the examples in Fig. 1. For fixed values τ , T , δ and γ , we have
represented three possible cases, corresponding to three different
executions, and hence with different values for kx. In the first case
max {kx, (τ + 1)} = (τ + 1). Hence, any crossing event occurring
in [(τ + 1) , kx + T ] has to be detected, with maximum delay
δ and with maximum uncertainty γ . Crossing events occurring
in [1, τ ] are not needed to be detected. In the second case,



Download English Version:

https://daneshyari.com/en/article/4999794

Download Persian Version:

https://daneshyari.com/article/4999794

Daneshyari.com

https://daneshyari.com/en/article/4999794
https://daneshyari.com/article/4999794
https://daneshyari.com

