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a b s t r a c t

In this paper, we propose a new aperiodic formulation of model predictive control for nonlinear
continuous-time systems. Unlike earlier approaches,weprovide event-triggered conditionswithout using
the optimal cost as a Lyapunov function candidate. Instead, we evaluate the time interval when the
optimal state trajectory enters a local set around the origin. The obtained event-triggered strategy ismore
suitable for practical applications than the earlier approaches in two directions. First, it does not include
parameters (e.g., Lipschitz constant parameters of stage and terminal costs) which may be a potential
source of conservativeness for the event-triggered conditions. Second, the event-triggered conditions are
necessary to be checked only at certain sampling time instants, instead of continuously. This leads to the
alleviation of the sensing cost and becomes more suitable for practical implementations under a digital
platform. The proposed event-triggered scheme is also validated through numerical simulations.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Event-Triggered Control (ETC) and Self-Triggered Control (STC)
have been active areas of research in the community of Networked
Control Systems (NCSs), due to their potential advantages over
the typical time-triggered controllers (Heemels, Johansson, &
Tabuada, 2012). In contrast to the time-triggered case where the
control signals are executed periodically, ETC and STC trigger the
executions based on the violation of certain prescribed control
performances, see e.g., Donkers andHeemels (2011) andWang and
Lemmon (2009).

In another line of research, Model Predictive Control (MPC)
has been one of the most popular control strategies applied
in a wide variety of applications. MPC plays an important role
when several constraints, such as actuator or physical limitations,
need to be explicitly taken into account. The basic idea of MPC
is to obtain the current control action by solving the Optimal
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Control Problem (OCP) online, based on the knowledge of current
state measurement and future behavior prediction through the
dynamics.

The application of ETC and STC framework to MPC, generally
known as Event-Triggered MPC (ETMPC) and Self-triggered MPC
(STMPC), is of particular importance as it potentially alleviates a
computational load by reducing the amount of solving OCPs. In
ETMPC and STMPC, the OCPs are solved only when some events,
generated based on certain control performance criteria, are
triggered. These strategies have received an increased attention in
recent years;most of theworks focus on discrete-time systems, see
e.g., Brunner, Gommans, Heemels, and Allgöwer (2015), Brunner,
Heemels, and Allgöwer (2014, 2016), Eqtami, Dimarogonas,
and Kyriakopoulos (2010), Gommans, Antunes, and Donkers
(2014), Gommans and Heemels (2015), Hashimoto, Adachi,
and Dimarogonas (2015b) and Henriksson, Quevedo, Peters,
Sandberg, and Johansson (2015), and some results include for
the continuous-time case, see e.g., Antunes and Heemels (2014),
Hashimoto, Adachi, and Dimarogonas (2016) and Kobayashi and
Hiraishi (2012) for linear systems and Eqtami, Dimarogonas, and
Kyriakopoulos (2011), Eqtami, Heshmati-Alamdari, Dimarogonas,
and Kyriakopoulos (2013), Hashimoto, Adachi, and Dimarogonas
(2015a, 2017), Li and Shi (2014) and Varutti, Kern, Faulwasser,
and Findeisen (2009) for nonlinear systems. In this paper, we are
particularly interested in the case of nonlinear continuous-time
systems. Among the afore-cited papers for nonlinear continuous-
time systems, the results can be further divided into two
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categories, depending on whether disturbances are taken into
account; see Varutti et al. (2009) for the disturbance-free case
and Eqtami et al. (2011), Eqtami et al. (2013), Hashimoto et al.
(2015a, 2017) and Li and Shi (2014) for the presence of disturbance
case. In Varutti et al. (2009), an event-triggered MPC strategy
has been proposed for nonlinear systems with no disturbances.
While a delay compensation strategy has been developed to tackle
uncertainties for networked control systems, an explicit form of
the event-triggered condition is not provided and beyond the
scope of that paper. In Eqtami et al. (2011), a self-triggered
strategy is proposed for general nonlinear systems with additive
disturbances. The self-triggered condition was derived based on
the optimal cost regarded as an ISS Lyapunov function candidate.
In Li and Shi (2014), an event-triggered strategy has been proposed
for general nonlinear systemswith additive bounded disturbances.
When deriving the event-triggered strategy, an additional state
constraint is imposed such that the optimal cost as a Lyapunov
function candidate is decreasing. In Hashimoto et al. (2017), a self-
triggered strategy was provided for nonlinear input affine systems
based on the optimal cost as a Lyapunov function candidate. In
the approach, an additional way to discretize an optimal control
trajectory into several control samples was provided so that these
can be transmitted to the plant over the network channels.

In this paper, we propose a new event-triggered formula-
tion of MPC for nonlinear continuous-time systems with additive
bounded disturbances. The main novelty of the proposed frame-
work with respect to earlier results in this category (Eqtami et al.,
2011, 2013; Hashimoto et al., 2015a, 2017; Li & Shi, 2014), is that
the event-triggered condition is derived based on a new stability
theorem, which does not evaluate the optimal cost as a Lyapunov
function candidate. In the stability derivations,we instead evaluate
the time interval, when the optimal state trajectory enters a local
region around the origin. By guaranteeing that this time interval
becomes smaller as the OCP is solved, it is ensured that the state
enters a prescribed set in finite time.

The derivation of the new stability is motivated by the fact that
the earlier event-triggered strategies may include Lipschitz con-
stant parameters for the stage and terminal cost (see e.g., Eqtami
et al., 2013;Hashimoto et al., 2017).When standard quadratic costs
are utilized, the corresponding Lipschitz parameters are character-
ized by themaximum distance of the state from the origin (Eqtami
et al., 2013), and the triggering condition becomes largely affected
by the state domain considered in the problem formulation. That
is, as a larger state domain is considered, the event-triggered con-
dition may becomemore conservative. Depending on the problem
formulation, therefore, it may not be desirable to include these pa-
rameters in the event-triggered condition. Since our approach does
not evaluate the optimal cost as a Lyapunov function candidate, the
corresponding event-triggered conditions do not include such un-
suitable parameters even though quadratic cost functions are used.
We will also illustrate through a simulation example that the pro-
posed approach attainsmuch less conservative result than our pre-
vious result presented in Hashimoto et al. (2017).

As another contribution of this paper with respect to the afore-
cited papers of ETMPC for continuous-time systems (including
the linear case), we will additionally incorporate Periodic Event-
TriggeredControl (PETC) framework (Heemels&Donkers, 2013). In
PETC, triggering conditions are evaluated only at certain sampling
time instants, instead of continuously. This approach has certain
advantages over the existing ETMPC strategies, since it alleviates
a sensing load to evaluate the event-triggered conditions and
becomesmore suitable to be implemented under digital platforms.
In the general PETC framework, the sampling time to evaluate the
event-triggered condition is constant for all update times (Heemels
& Donkers, 2013). In our proposed approach, on the other hand,
the sampling time is selected in an adaptive way; for each time

of solving OCP, the controller adaptively determines the sampling
time to check the event-triggered condition, such that the desired
control performance can be guaranteed.

This paper is organized as follows. In Section 2, the optimal
control problem is formulated. In Section 3, feasibility of the OCP is
analyzed. In Section 4, our main proposed algorithm is presented,
and the stability is shown in Section 5. A simulation example
validates our proposed method in Section 6. We finally conclude
in Section 7.
Notations. Let R, R>0, R≥0, N≥0, N≥1 be the real, positive real,
non-negative real, non-negative integers and positive integers,
respectively. For a given matrix Q , we use Q ≻ 0 to denote that
the matrix Q is positive definite. The notation λmin(Q ) is used to
denote the minimal eigenvalue of the matrix Q . We denote ∥x∥ as
the Euclidean norm of vector x, and ∥x∥P as a weighted norm of
vector x, i.e., ∥x∥P =

√
xTPx. Given a compact set Φ ⊆ Rn, we

denote by ∂Φ the boundary of Φ . The function f : Rn
× Rm

→ Rn

is called Lipschitz continuous in Rn with a weighted matrix P , if
there exists 0 ≤ Lf < ∞ such that ∥f (x1, u) − f (x2, u)∥P ≤
Lf ∥x1 − x2∥P ,∀x1, x2 ∈ Rn,∀u ∈ Rm.

2. Problem formulation

2.1. Dynamics and optimal control problem

In this section the problem formulation is defined. We consider
to apply MPC to the following nonlinear systems with additive
disturbances:

ẋ(t) = f (x(t), u(t))+ w(t), t ≥ t0, (1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input,
w(t) ∈ Rn is an additive bounded disturbance, and t0 ∈ R denotes
the initial time. The control input u and the disturbance w are
assumed to satisfy the following constraints:

u(t) ∈ U ⊆ Rm, w(t) ∈ W ⊆ Rn, ∀t ≥ t0. (2)

Regarding the constraint (2) and the plant model (1), we make the
following standard assumptions (Chen & Allgöwer, 1998):

Assumption 1. (i) The constraint sets U and W are compact,
convex and 0 ∈ U; (ii) the function f : Rn

× Rm
→ Rn is twice

continuously differentiable, and f (0, 0) = 0; (iii) the system (1)
has a unique, absolutely continuous solution for any initial state
x(t0) and any piecewise continuous control and disturbance u :
[t0,∞) → U, w : [t0,∞) → W ; (iv) for the linearized system
around the origin with no disturbances, i.e., ẋ(t) = Af x(t)+Bf u(t),
where Af = ∂ f /∂x(0, 0) and Bf = ∂ f /∂u(0, 0), the pair (Af , Bf ) is
stabilizable.

Let tk, k ∈ N≥0 be the update time instants when OCPs are
solved, and let ∆k = tk+1 − tk be the inter-event times. At tk,
the controller solves an OCP based on the state measurement x(tk)
and the predictive behavior of the systems described by (1). In this
paper, we consider the following cost to be minimized:

J(x(tk), u(·)) =
 tk+Tk

tk
∥x̂(ξ)∥2Q + ∥u(ξ)∥2Rdξ, (3)

where Q = Q T
≻ 0, R = RT

≻ 0 and Tk > 0 is the prediction
horizon. x̂(ξ) denotes the nominal trajectory of (1) given by ˙̂x(ξ) =
f (x̂(ξ), u(ξ)) for all ξ ∈ [tk, tk + Tk] with x̂(tk) = x(tk). Here, the
prediction horizon Tk is not constant but is adaptively selected such
that it is strictly decreasing.More characterization of Tk is provided
in this section when formulating the OCP.

The following lemma states that there exists a stabilizing, state
feedback controller in a prescribed local set around the origin:
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