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a b s t r a c t

This paper investigates the relations between three different properties, which are of importance in
optimal control problems: dissipativity of the underlying dynamics with respect to a specific supply rate,
optimal operation at steady state, and the turnpike property. We show in a continuous-time setting that
if along optimal trajectories a strict dissipation inequality is satisfied, then this implies optimal operation
at this steady state and the existence of a turnpike at the same steady state. Finally, we establish novel
converse turnpike results, i.e., we show that the existence of a turnpike at a steady state implies optimal
operation at this steady state and dissipativitywith respect to this steady state.Wedrawupon a numerical
example to illustrate our findings.

© 2017 Elsevier Ltd. All rights reserved.

The notion of turnpike property of an optimal control problem
(OCP) — introduced by Dorfman, Samuelson and Solow (1958)
— is used to describe the phenomenon that in many finite-
horizon OCPs the optimal solutions for different initial condi-
tions approach a neighborhood of the best steady state, stay
within this neighborhood for some time, and might leave this
neighborhood towards the end of the optimization horizon. Turn-
pike phenomena have been observed in different types of OCPs:
with/without terminal constraints (Carlson, Haurie & Leizarowitz,
1991; Clarke, 2013; Trélat & Zuazua, 2015) and with/without
discounted cost functionals (Gurman & Ukhin, 2004; Würth,
Rawlings & Marquardt, 2009; Zaslavski, 2014). Turnpikes have
received widespread interest in the context of optimal control of
economics (Carlson et al., 1991; Mckenzie, 1976). The works by
Anderson and Kokotovic (1987), Rao and Mease (1999), Sahlodin
and Barton (2015) and Wilde and Kokotovic (1972) show how
turnpike phenomena can be used to approximate solutions of
OCPswith long horizons appearing in applications.1 Turnpikes also

✩ The material in this paper was partially presented at the 53rd IEEE Conference
on Decision and Control, December 15–17, 2014, Los Angeles, CA, USA. This paper
was recommended for publication in revised form by Associate Editor Andrey V.
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1 We remark that occasionally turnpike phenomena are denoted by varying

names: Anderson and Kokotovic (1987) and Wilde and Kokotovic (1972) refer to

appear in OCPs arising in economicMPC formulations (Faulwasser
& Bonvin, 2015a, b, 2017; Grüne, 2013; Würth et al., 2009).
Recently, Grüne and Müller (2016) and Damm, Grüne, Stieler
and Worthmann (2014) discussed different aspects of turnpike
phenomena in a discrete-time setting with constraints and in
a continuous-time setting without constraints (Trélat & Zuazua,
2015). Taking into account the large number of publications on
turnpike phenomena, it is quite surprising that only very fewworks
state a precise definition of turnpike properties, see Damm et al.
(2014) and Zaslavski (2014). Often, turnpike results for specific
OCPs are proven without a rigorous definition of the turnpike
property itself (Carlson et al., 1991; Clarke, 2013; Gurman &Ukhin,
2004;Mckenzie, 1976).While such an approach simplifies the con-
struction of many turnpike results, it hinders establishing converse
turnpike theorems.

The main goal of this paper is to analyze the relation between
three different properties that arise in the context of finite-horizon
continuous-time OCPs: system dissipativity with respect to a spe-
cific supply rate (which depends on the cost function of the OCP),
optimal operation at steady state, and the existence of a turnpike
at that steady state. Recently, a related discrete-time analysis has
been presented under the assumptions of local controllability of
the turnpike and turnpike-like behavior of nearly optimal solu-
tions (Grüne & Müller, 2016). The present paper takes a different

turnpikes as a dichotomy of optimal control problems, while Rao and Mease (1999)
uses the phrase hypersensitive optimal control problems.
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route by avoiding such assumptions in the continuous-time case.
Its contributions are as follows: While the preliminary version of
this paper (Faulwasser, Korda, Jones & Bonvin, 2014) discussed
state turnpikes, we extend these results and provide a framework
for the definition of different turnpike properties of OCPs, i.e., we
suggest to distinguish state, input–state, and extremal turnpikes
of OCPs. Our main contribution are novel converse turnpike re-
sults that require neither local controllability of the turnpike nor
turnpike-like behavior of nearly optimal solutions as in (Grüne
& Müller, 2016). In particular, we show that the existence of a
turnpike implies optimal operation at steady state; we prove that
exactness of turnpikes implies dissipativity, whereby exactness of
a turnpike means that the optimal solutions are at the turnpike
steady state for some parts of the optimization horizon; and we
show that under mild local assumptions on the cost function of
the OCP, the existence of a turnpike implies satisfaction of a strict
dissipation inequality along optimal solutions.

The remainder of this paper is structured as follows: Section 1
introduces a formal definition of turnpike and dissipativity prop-
erties as well as the definition of optimal operation at steady state.
Section 2 discusses implications of dissipativity. Section 3 inves-
tigates the relation between optimal operation at steady state and
dissipativity,while Section 4 presents converse turnpike results. To
demonstrate how some of our conditions can be verified, we draw
upon the numerical example of a chemical reactor in Section 5.

1. Preliminaries and problem statement

We briefly recall the notions of optimal operation at steady
state, dissipativity with respect to a steady state, and turnpike
properties of OCPs.

1.1. Optimal steady–state operation

We consider the nonlinear system given by

ẋ = f (x, u), x(0) = x0, (1)

where the states x ∈ Rnx and the inputs u ∈ Rnu are constrained to
lie in the compact sets X ⊂ Rnx and U ⊂ Rnu . We assume that the
vector field f : Rnx × Rnu → Rnx is Lipschitz on X × U . A solution
to (1), starting at x0 at time 0, driven by the input u : [0, ∞) → U ,
is denoted as x(·, x0, u(·)).

Consider the maximal control-invariant set X0 ⊆ X given by

X0 = {x0 ∈ X | ∃ u(·) ∈ L([0, ∞),U) :

∀t ≥ 0 x(t, x0, u(·)) ∈ X } , (2)

where L([0, ∞),U) denotes the class of measurable functions on
[0, ∞) taking values in the compact set U ⊂ Rnu . This set is the
largest subset of X that can be made positively invariant via a
control u(·). Here, we assume thatX0 ̸= ∅. Furthermore, consider a
finite-horizonOCP that aims atminimizing the objective functional

JT (x0, u(·)) =
1
T

∫ T

0
F (x(t), u(t)) dt, (3)

where F : X×U → R is the cost function, and T is the optimization
horizon. We assume that F is Lipschitz on X × U . The OCP reads

inf
u(·)∈L([0,T ],U)

JT (x0, u(·)) (4a)

subject to
ẋ(t) = f (x(t), u(t)), x(0) = x0 (4b)

∀t ∈ [0, T ] : x(t) ∈ X , u(t) ∈ U . (4c)

The pair (x(·, x0, u(·)), u(·)) is called admissible ifu(·) ∈ L([0, T ],U)
and if there exists a corresponding absolutely continuous solution

x(·, x0, u(·)), which satisfies x(t, x0, u(·)) ∈ X for all t ∈ [0, T ]. An
optimal solution to (4) is denoted by u⋆(·) and the corresponding
state trajectory is written as x⋆(·, x0, u⋆(·)).2

Notational remarks: We denote the dependence of optimal solu-
tions to (4) on the initial condition x0 and the horizon length T by
writingOCPT (x0). Whenever it is convenient, input–state pairs are
written as z = (x, u)T and the combined input–state constraints
are written as Z = X × U . Throughout this paper, we use the
superscript ·̄ to denote a variable at steady state. Hence, we have
f (z̄) = f (x̄, ū) = 0. The set of admissible steady–state pairs is
denoted as

Z̄ := {z̄ ∈ Z | 0 = f (z̄)} .

Admissible trajectory pairs of OCPT (x0) are abbreviated by
z(·, x0) = (x(·, x0, u(·)), u(·))T . For any function ϕ with domain
Rnx+nu we write

ϕ
(
z⋆(t, x0)

)
:= ϕ

(
x⋆(t, x0, u⋆(·, x0)), u⋆(t, x0)

)
.

While OCPT (x0) aims at optimizing the transient performance of
system (1), one can as well ask for the best stationary operating
conditions. These conditions are given by the following steady–
state problem:

inf
z̄ ∈Rnx+nu

F (z̄) subject to z̄ ∈ Z̄ (5)

where F is the same as in (3). A globally optimal solution to this
static optimization problem is denoted as z̄⋆. The set of optimal
steady–state pairs is denoted by Z̄⋆, i.e.,

Z̄⋆
=

{
z̄⋆

∈ Z̄ | z̄⋆ is optimal in (5)
}
. (6)

Henceforth, we assume that Z̄⋆
̸= ∅. The sets X̄ and X̄ ⋆, with

X̄ ⋆
⊆ X̄ ⊂ X , denote the projection of Z̄ ⊂ Rnx × Rnu onto the

state space Rnx and the projection of Z̄⋆
⊂ Rnx × Rnu onto Rnx ,

respectively.
In the operation of dynamic processes, it is of major interest

to know whether the best infinite-horizon performance can be
achieved at the best steady state or via permanent transient oper-
ation. Optimal operation over an infinite horizon is defined similar
to (Angeli, Amrit & Rawlings, 2012) and (Grüne, 2013) as follows.

Definition 1 (Optimal Operation at Steady State). System (1) is
said to be optimally operated at steady state if there exists a z̄ =

(x̄, ū)T ∈ Z̄ such that, for any initial condition x0 ∈ X0 and any
infinite-time admissible pair z(·, x0), we have

lim inf
T→∞

JT (x0, u(·)) ≥ F (z̄). (7)

The following lemma follows trivially from the above.

Lemma1. If system (1) is optimally operated at z̄, then z̄ is an optimal
solution to (5).

1.2. Turnpike properties of OCPs

Since there is no generally valid definition of turnpike proper-
ties of continuous-time OCPs, we propose a definition motivated
by a turnpike result given by Carlson et al. (1991). To this end,
consider the placeholder variable ξ ∈ {x, z} , which, depending

2 Here, we assume for simplicity that the optimal solution exists and is attained.
We refer to Lee and Markus (1967) and Vinter (2010) for conditions ensuring the
existence of optimal solutions to OCP (4).
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