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a b s t r a c t

We study the stabilization of networked control systems with asynchronous sensors and controllers.
Offsets between the sensor and controller clocks are unknown and modeled as parametric uncertainty.
First we consider multi-input linear systems and provide a sufficient condition for the existence of linear
time-invariant controllers that are capable of stabilizing the closed-loop system for every clock offset in
a given range of admissible values. For first-order systems, we next obtain the maximum length of the
offset range for which the system can be stabilized by a single controller. Finally we illustrate the results
with a numerical simulation.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In networked and embedded control systems, the outputs of
plants are often sampled in a nonperiodic fashion and sent to
controllers with time-varying delays. To address robust control
with such imperfections, various techniques have been developed,
for example, the input-delay approach (Fridman, Seuret, & Richard,
2004;Mirkin, 2007), the gridding approach (Donkers, Heemels, van
deWouw, & Hetel, 2011; Fujioka, 2009; Oishi & Fujioka, 2010), and
the impulsive systems approach based on Lyapunov functionals
(Naghshtabrizi, Hespanha, & Teel, 2010), on looped functionals
(Briat & Seuret, 2012), and on clock-dependent Lyapunov functions
(Briat, 2013); see also the surveys (Hespanha, Naghshtabrizi, & Xu,
2007; Hetel et al., 2017). In contrast to the references mentioned
above, here we assume that time-stamps are used to provide
the controller with information about the sampling times and
the communication delays incurred by each measurement. In
this approach, sensors send measurements to controllers together
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with time-stamps, and the controllers exploit this information
to mitigate the effect of variable delays and sampling periods
(Garcia, Antsaklis, & Montestruque, 2014; Graham & Kumar,
2004; Nakamura, Hirata, & Sugimoto, 2008). However, when
the local clocks at the sensors and at the controllers are not
synchronized, the time-stamps and the true sampling instants
do not match. Protocols to establish synchronization have been
actively studied as surveyed in Rhee, Lee, Kim, Serpedin, and Wu
(2009), and synchronization by the global positioning system (GPS)
or radio clocks has been utilized in some systems. Nevertheless,
synchronizing clocks over networks has fundamental limits (Freris,
Graham, & Kumar, 2011), and a recent study (Jiang, Zhang,
Harding, Makela, & Domíngues-García, 2013) has shown that
synchronization based on GPS signals is vulnerable against attacks.

In this paper, we study the stabilization problem of systems
with asynchronous sensing and control. We assume that the
controller can use the time-stamps but does not know the offset
between the sensor and controller clocks, but we do assume that
this offset is essentially constant over the time scales of interest.
Our objective is to find linear time-invariant (LTI) controllers that
achieve closed-loop stability for every clock offset in a given range.

We formulate the stabilization of systems with clock offsets as
the problem of stabilizing systems with parametric uncertainty,
which can be regarded as the simultaneous stabilization of a family
of plants, as studied in Vidyasagar (1985, Sec. 5.4) and Vidyasagar
and Viswanadham (1982). However, we had to overcome a few
technical difficulties that distinguish the problem considered here
from previously published results:
Infinitely many plants: We consider a family of plant models that is
indexed by a continuous-valued parameter. Such a family includes
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infinitely many plants, but the approaches for simultaneous
stabilization, e.g., in Shi and Qi (2009) exploit the property that the
number of plant models is finite.
Nonlinearity of the uncertain parameter: In this work, the uncertain
parameter appears in a non-linear form. Therefore, it is not suitable
to use the techniques based on linear matrix inequalities (LMIs)
in de Oliveira, Bernussou, and Geromel (1999) for the robust
stabilization of systemswith polytopic uncertainties. Although the
robust stability analysis based on continuous paths of systemswith
respect to the ν-gapmetric was developed in Cantoni, Jönsson, and
Kao (2012), controller designs based on this approach have not
been fully investigated.
Common unstable poles and zeros: Earlier studies on simultaneous
stabilization consider a restricted class of plants. For example,
the sufficient condition in Blondel, Campion, and Gevers (1993) is
obtained for a family of plants with no common unstable zeros
or poles. The set of plants in Maeda and Vidyasagar (1984) has
common unstable zeros (or poles) but all the plants are stable
(or minimum-phase). These assumptions are not satisfied for the
systems in the present paper.

We make the following technical contributions for multi-input
systems and first-order systems: First we consider multi-input
systems and obtain a sufficient condition for stabilization with
asynchronous sensing and control. We construct a stabilizing
controller from the solution of an appropriately defined H∞

control problem. The above mentioned difficulties found in the
simultaneous stabilization problemwe consider are circumvented
by exploiting geometric properties onH∞. For first-order systems,
we obtain an explicit formula for the exact bound on the clock
offset that can be allowed for stability. This result is based on the
stabilization of interval systems (Ghosh, 1988; Olbrot & Nikodem,
1994), to which our problem can be reduced for first-order
plants. We start by formulating the problem in the context of
state feedback without disturbances and noise, but we show in
Section 3.2 that the above results also apply for output feedback
with disturbances and noise.

The authors in the previous study (Okano,Wakaiki, &Hespanha,
2015) have considered systems with time-varying clock offsets
and have proposed a stabilization method with causal controllers,
based on the analysis of data rate limitations in quantized control.
The stability analysis and the L2-gain analysis of systems with
variable clock offsets have been investigated in Wakaiki, Okano,
and Hespanha (2015, 2016), respectively. The major difference
with respect to those studies is that herewe consider only constant
offsets but design stabilizing LTI controllers. This paper is based
on the conference paper (Wakaiki, Okano, & Hespanha, 2015), but
here we extend the preliminary results for single-input systems to
the multi-input case.

The remainder of the paper is organized as follows. Section 2
introduces the closed-loop system we consider and presents the
problem formulation. Section 3 is devoted to the discretization of
the closed-loop system. In Section 4, we obtain a sufficient condi-
tion for the stabilizability of general-order systems. In Section 5,
we derive the exact bound on the permissible clock offset for first-
order systems. A numerical example is presented in Section 6.
Notation and definitions: We denote by Z+ the set of non-negative
integers. The symbols D and T denote the open unit disc {z ∈

C : |z| < 1} and the unit circle {z ∈ C : |z| = 1}, re-
spectively. We denote by Dc the complement of the open unit disc
{z ∈ C : |z| ≥ 1}.

A square matrix F is said to be Schur stable if all its eigenvalues
lie in the unit discD. We say that a discrete-time LTI system ξk+1 =

Fξk + Guk, yk = Hξk is stabilizable (detectable) if there exists a
matrix K (L) such that F − GK (F − LH) is Schur stable. We also
use the terminology (F ,G) is stabilizable (respectively, (F ,H) is
detectable) to denote this same concept.

Fig. 1. Closed-loop system with a time-stamp aware estimator.

Wedenote byRH∞ the space of all bounded holomorphic real-
rational functions inD. The field of fractions ofRH∞ is denoted by
RF ∞. For a commutative ring R,M(R) denotes the set of matrices
with entries in R, of any order. For M ∈ M(C), ∥M∥ denotes the
induced 2-norm. For G ∈ M(RH∞), the H∞-norm is defined as
∥G∥∞ = supz∈D ∥G(z)∥. For G =


G11 G12
G21 G22


∈ M(RF ∞) and

Q ∈ M(RF ∞), we define a lower linear fractional transformation
of G and Q as Fℓ(G,Q ) := G11 + G12Q (I − G22Q )−1G21.

A pair (N,D) in M(RH∞) is said to be right coprime if the
Bezout identity XN + YD = I holds for some X , Y ∈ M(RH∞).
P ∈ M(RF ∞) admits a right coprime factorization if there exist D,
N ∈ M(RH∞) such that P = ND−1 and the pair (N,D) is right
coprime. Similarly, a pair (D̃, Ñ) in M(RH∞) is left coprime if the
Bezout identity ÑX̃ + D̃Ỹ = I holds for some X̃ , Ỹ ∈ M(RH∞).
P ∈ M(RF ∞) admits a left coprime factorization if there exist
D̃, Ñ ∈ M(RH∞) such that P = D̃−1Ñ and the pair (D̃, Ñ)
is left coprime. If P is a scalar-valued function, then we use the
expressions coprime and coprime factorization.

2. Problem statement

Consider the following LTI plant:

ΣP : ẋ(t) = Ax(t) + Bu(t), (1)

where x(t) ∈ Rn and u(t) ∈ Rm are the state and the input of
the plant, respectively. As shown in Fig. 1, this plant is connected
through a sampler and a zero-order hold (ZOH) to a time-stamp
aware estimator and a controller, which will be described soon.

Let s1, s2, . . . be sampling instants from the perspective of the
controller clock. A sensor measures the state x(sk) and sends it
to a controller together with a time-stamp. However, since the
sensor and the controllermaynot be synchronized, the time-stamp
determined by the sensor typically includes an unknown offset
with respect to the controller clock. In this paper, we assume
that the clock offset is constant. Although clock properties are
affected by environments such as temperature and humidity, the
change of such properties is slow for the time scales of interest.
Furthermore, the difference of clock frequencies can be ignored.
This is justified by noting that time synchronization techniques,
like the one proposed in He, Cheng, Shi, Chen, and Sun (2014),
can achieve asymptotic convergence of the clock frequencies (in
the mean-square sense), even in the presence of random network
delays. We thus assume that the time-stamp ŝk reported by the
sensor is given by

ŝk = sk + ∆ (k ∈ N) (2)

for some unknown constant ∆ ∈ R.
Let h > 0 be the update period of the ZOH. The control signal

u(t) is assumed to be piecewise constant and updated periodically
at times tk = kh (k ∈ N)with values uk computed by the controller:
u(t) = uk for t ∈ [tk, tk+1). We place a basic assumption for
stabilization of sampled-data systems.
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