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a b s t r a c t

In this paper we study the problem of scheduling sensors to estimate the state of a linear dynamical
system. The estimator is a Kalman filter and our objective is to optimize the a posteriori error covariance
over an infinite time horizon. We focus on the case where a fixed number of sensors are selected
at each time step, and we characterize the exact conditions for the existence of a schedule with
uniformly bounded estimation error covariance. Using this result, we construct a scheduling algorithm
that guarantees that the error covariance will be bounded if the existence conditions are satisfied.We call
such an algorithm complete. Finally, we provide simulations to compare the performance of the algorithm
against other known techniques.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

One technique for monitoring an environmental process is to
deploy a sensor network. Each sensor can be equipped with the
ability to make a range of measurements. Sensor networks have
been used in various applications including determining a robot’s
state (Hovland & McCarragher, 1997), tracking the position of a
target (Isler & Bajcsy, 2005), selecting the frequency in radar and
sonar applications, or monitoring tasks such as chemical processes
(Kookos & Perkins, 1999), seismic activity or toxin levels at a fac-
tory. Sensor scheduling techniques can also be applied to problems
such as adaptive compressed sensing (Liu, Chong, & Scharf, 2012).

The collection of data can be done by operating every sensor
continuously; however, the network may be required to have a
long life span and so this strategy may not be viable due to energy
and communication constraints. To overcome these restrictions,
sensors can alternate between awake and asleepmodes. Unless the
network provides enough redundancy, this method could result in
an incomplete picture of the phenomenon of interest. Therefore,
a sensing schedule has to be constructed in an intelligent way in
order to obtain asmuch information as possible. This is, in essence,
the sensor scheduling problem.
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The sensor scheduling problem has received considerable
attention in recent years. In the context of linear Gaussian systems,
a Kalman filter is the optimal estimator in that it produces an
estimate with the least mean square error. Thus, the Kalman filter
is commonly used as the basis for the sensor scheduling problem.
An exception is Ilkturk (2015), where the condition number of the
sequence observability matrix is used as a metric to find a sensor
schedule. In this paper wewill use ametric on the error covariance
of the Kalman filter as our objective function. With this setting,
the infinite horizon sensor scheduling problem is studied in Zhang,
Vitus, Hu, Abate, and Tomlin (2010). Under somemild conditions, it
is shown that the optimal infinite horizon schedule is independent
of the initial covariance. Also, it is shown that given an optimal
schedule, its cost can be estimated arbitrarily closely by a periodic
schedule, with a finite period. However, if the optimal schedule is
not known, the analysis does not provide a constructive method
for efficiently computing an approximate periodic schedule.

Numerous approaches have been proposed to tackle the sensor
scheduling problem. The results in Zhang et al. (2010) serve as
a reason to find optimal periodic schedules for infinite horizon
scheduling problem. The authors in Shi and Chen (2013b) find
a periodic schedule using a branch-and-bound approach. In Shi
and Chen (2013a) the authors find an optimal periodic schedule
by approximating the objective function of the sensor scheduling
problem. A locally optimal solution to periodic scheduling was
proposed in Liu, Fardad, Varshney, and Masazade (2014) with
constraints on the number of times each sensor can be used in a
period. Their objective function incorporates both the estimation
error and the number of sensors used per time step. A drawback to
these approaches is that the optimal period is unknown, and thus
the desired period must be given as an input.
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Optimal and semi-optimal algorithms for the finite horizon
problem that use tree pruning techniques are provided in Vitus,
Zhang, Abate, Hu, and Tomlin (2012). In Gupta, Chung, Hassibi, and
Murray (2004), three different approaches (slidingwindow, greedy
thresholding and random selection) are empirically compared.
The authors further develop the random selection method in
Gupta, Chung, Hassibi, and Murray (2006), where a strategy for
stochastically selecting measurements based on an intelligently
constructed probability distribution is described and bounded.
In Maheswararajah, Halgamuge, and Premaratne (2009), a few
different approaches are studied, including a best step look ahead
algorithm, an approach based on the Viterbi algorithm and another
by casting the problem as a duality problem. The algorithms are
described and empirically compared in terms of performance and
computation time.

A convex relaxation based approach is discussed in Weimer,
Sinopoli, and Krogh (2008) and applied to the monitoring of
CO2 using a wireless sensor network. Another convex relaxation
approach is given in Joshi and Boyd (2009) along with solution
dependent bounds. In Shamaiah, Banerjee, and Vikalo (2010),
this approach is, however, empirically shown to be worse than
a greedy algorithm. In Jawaid and Smith (2015), authors studied
some properties of greedy sensor scheduling algorithms and their
relation to submodular set functions.

A general framework for the sensor scheduling problem is
presented in Mo, Ambrosino, and Sinopoli (2011). A number of
problems can be addressed in this framework such as minimizing
the final covariance over a time horizon, the average covariance,
the variance of a single state, or even the cost of a finite horizon LQG
regulator. A number of network constraints can also be included.
The problem is framed as a relaxed quadratic program, and a
greedy approach is described although the error bound is not
necessarily uniformly bounded for unstable systems. In Maity and
Baras (2015), a continuous time sensor scheduling problem is
considered for an objective capturing both estimation error and
sensor switching costs.

In this paper we consider infinite-horizon sensor scheduling.
Based on the discussion above, existing approaches for this
problem are (1) to fix a period and compute a periodic schedule;
(2) to repeatedly apply a finite-horizon algorithm; or (3) to greedily
select sensors at each time step. For each of these methods, there
are no guarantees that the resulting schedule will produce a
uniformly bounded sequence of covariance matrices. In fact, we
do not know of any results that characterize the exact conditions
under which an infinite horizon sensor schedule exists that results
in a uniformly bounded sequence of covariance matrices.
Contributions: We give necessary and sufficient conditions for the
existence of an infinite horizon sensor schedule with a bounded
error covariance (Section 4).We thenprovide a complete algorithm
for sensor scheduling (Section 5): That is, our algorithm outputs
a uniformly bounded sensor schedule if one exists. The algorithm
has the same runtime as the simple greedy algorithm and we
show in simulations (Section 6) that our proposed algorithm
outperforms the greedy algorithm, and can be used to efficiently
compute schedules for high-dimensional linear systems with a
large number of sensors.

A preliminary version of this paper was presented in Jawaid
and Smith (2014). Relative to this early version, we now provide a
more efficient algorithm along with details on its implementation.
We also extend both the algorithm and analysis to the general
problem of k sensors per time step, and provide complete proofs
of the correctness of the proposed greedy algorithm. Finally, we
present more extensive simulation results on high-dimensional
linear systems, including a system obtained by discretizing the
heat equation.

2. Preliminaries

Consider the discrete-time linear stochastic system

xt+1 = Axt + wt , xt ∈ Rn,

yt = Ctxt + vt , yt ∈ Rk (1)

where A ∈ Rn×n and C ∈ Rm×n. The matrix Ct is a subset of k
rows of C . This is the standard sensor selection model, as in Mo
et al. (2011) and Vitus et al. (2012). The process noise wt and
measurement noise vt are zero mean Gaussian noise vectors with
covariance matrices W , V ∈ Rn×n, respectively, with W ≽ 0 and
V ≻ 0. We assume that the noises are independent over time.

For the case Ct = C (LTI system), the system is said to be
observable if its observability matrix Θ = col(C, CA, . . . , CAn−1)
has rank n.

If the observability matrix is not full rank then a similarity
transform T can be used to convert the system into standard form
for unobservable systems.

Ā = T−1AT =

Aō A12
0 Ao


, C̄ = CT =


0 Co . (2)

Here (Ao, Co) is observable. If Aō is stable, the system is said to be
detectable.

Consider a sequence of measurements σ = (σ0, σ1, . . .), and
the corresponding sequence of matrices (C0, C1, . . .). For a given
time t and time window k, the sequence observability matrix for
the given system can be written as

Bσ (t, t + k) = col(Ct , Ct+1A, . . . Ct+kAk).

The following definition follows from the definition of Uniform
Detectability in Anderson and Moore (1981).

Definition 1 (Uniform Detectability). For the system in (1), the
sequence of measurements σ is uniformly detectable if there exist
non-negative integers s, r and constants α ∈ [0, 1) and β > 0,
such that for all {x ∈ Rn

| ∥x∥ = 1} and all times t ,Arx
 ≥ α =⇒ ∥B(t, t + s)x∥ ≥ β > 0. (3)

Additionally, for the given system, the sequence is uniformly
observable if there exist integer s and positive constantsβ1,β2 such
that

0 < β1 ≤ ∥B(t, t + s)x∥ ≤ β2
⇐⇒ rank(B(t, t + s)) = n. (4)

Note that for a general time varying system, the equivalence
in (4) holds only in the forward direction. For example, the re-
verse direction does not necessarily hold when Ct or At can take on
infinitely many values. This, however, is not the case for the sys-
tem in (1), where A is fixed and Ct is a subset of rows of a time
invariant C .

Finally, we will use the following result for some of our proofs.

Lemma 2. Suppose (A, C) is observable and A is full rank. Then,
letting ci be the ith row of C,

B , col(c1, c1A, . . . , c1An−1, c2An, . . . , cmAmn−1) (5)

is full rank.

Proof. Since rank(Θ) = n, it suffices to show that each of the
rows of Θ can be written as a linear combination of the rows in
B. Let Xi = {ci, ciA, . . . , ciAn−1

} for i = 1, . . . ,m. Note that the
rows of Θ comprise of the vectors in the multiset

m
i=1 Xi. Also,

note that x ∈ Xi =⇒ xA(i−1)n is a row of B. Let Xb
i = XiA(i−1)n

=

{ciA(i−1)n, ciA(i−1)n+1, . . . , ciAin−1
}. So the rows of B comprise of

elements of the multiset
m

i=1 X
b
i .
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