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a b s t r a c t

In this paper, a decentralized output-feedback adaptive control scheme is proposed for a class of
interconnected nonlinear systems with input quantization. Both logarithmic quantizers and improved
hysteretic quantizers are studied, and a linear time-varying model is introduced to handle the difficulty
caused by quantization. The proposed scheme allows the parameters of the quantizers to be freely
changed during operation, and can guarantee global stability of the overall closed-loop system regardless
of the coarseness of the quantizers and the existence of interactions among subsystems. Moreover, with
the aid of a kind of high-gain K-filters, it is shown that all tracking errors converge to a residual set which
can be made arbitrarily small by adjusting some design parameters. Simulation results are presented to
illustrate the effectiveness of the proposed scheme.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Motivated by great interest for applications in complex engi-
neering systems such as electric power systems and chemical re-
actors, decentralized adaptive control for uncertain interconnected
systems has long been an active issue in the control community.
Different from centralized controllers, decentralized controllers
are designed independently for subsystems and use only local sig-
nals for feedback, which brings challenge to the design and analy-
sis in face of uncertain interactions among subsystems. In the early
stage of the research, decentralized adaptive control schemeswere
developed mainly based on the certainty equivalence principle
(Ioannou & Kokotovic, 1985; Shi & Singh, 1992; Wen & Hill, 1992).
Since themiddle 1990s, the research has been acceleratedwith the
development of backstepping design (Krstic, Kanellakopoulos, &
Kokotovic, 1995) and considerable achievements have beenmade;
see, for instance, Jiang (2000), Li, Tong, and Li (2015),Wang and Lin
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(2015), Wen (1994) and Zhou and Wen (2008) and the references
therein for more details.

On the other hand, signals in modern control systems are
often quantized before being transmitted through communication
channels and recent years have witnessed an increasing amount
of attention in quantized control. A quantizer can be regarded
as a map from a continuous region to a discrete set of numbers,
making the control signal or the measurement of the system to
be controlled a piecewise constant function of time. Quantization
introduces strong nonlinear characteristics, which may degrade
system performance or even result in instability. Aiming at
understanding the required quantization resolution andmitigating
the effect of quantization errors, much attention has been paid
to quantized control of systems whose models are completely
known or suffer from uncertainties composed of disturbances only
(Ceragioli, Persis, Claudio, & Frasca, 2011; De Persis, 2005; Fu & Xie,
2005; Liberzon, 2014; Liberzon & Hespanha, 2005).

In practice, it is often required to consider systems with gen-
eral uncertainties such as unknownparameters anduncertain non-
linearities. In Corradini and Orlando (2008), De Persis (2009) and
Liu, Jiang, and Hill (2012a,b), such uncertainties were studied for
quantized control systems via robust control approaches, under
the assumption that the bounds of the uncertainties are known.
As we know, adaptive control is also useful to handle uncertain-
ties and specially suitable for those without bound knowledge.
Considering input quantization, adaptive control schemes were
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developed for uncertain linear andnonlinear systems inHayakawa,
Ishii, and Tsumura (2009a,b), respectively, but the resulting stabil-
ity conditions depend on control signals and are hard to be checked
in advance. In Zhou, Wen, and Yang (2014), an adaptive backstep-
ping control scheme was proposed for a class of strict-feedback
systems and global stability was guaranteed by choosing the pa-
rameters of the quantizer and the controller to satisfy a derived in-
equality, which relaxes the stability conditions in Hayakawa et al.
(2009a,b). A drawback of Zhou et al. (2014) lies in that the system
nonlinearities are required to be globally Lipschitz. This restriction
was later removed in Xing, Wen, Su, Cai, and Wang (2015). How-
ever, the same as Hayakawa et al. (2009a,b), and Zhou et al. (2014),
the scheme in Xing et al. (2015) requires the measurement of full
states. Recently, adaptive quantized control via output-feedback
was studied in Xing,Wen, Zhu, Su, and Liu (2016) for a class of non-
linear systems. Nevertheless, to the best of our knowledge, existing
adaptive quantized control schemes generally assume that the pa-
rameters of quantizers are constant (Xing et al., 2015, 2016; Zhou
et al., 2014) or changeable but satisfy some inequalities involving
control signals (Hayakawa et al., 2009a,b). In other words, these
schemes do not consider the more general case that the parame-
ters of quantizersmay be freely changed during operation,which is
an important issue from both theoretical and practical viewpoints.
For example in tracking control, when the tracking error is small,
the quantizermay be adjusted to be coarser by changing its param-
eters to decrease the communication burden; on the other hand,
when the tracking error is large, the quantizer may be adjusted to
be finer to improve the tracking performance. Moreover, existing
adaptive quantized control schemes aremainly focused on control-
ling single-input single-output systems without interactions with
other systems, anddecentralized adaptive quantized control for in-
terconnected systems needs to be further investigated.

In this paper, a decentralized output-feedback adaptive back-
stepping control scheme is proposed for a class of interconnected
nonlinear systemswith input quantization. Both logarithmic quan-
tizers and hysteretic quantizers are studied. The proposed scheme
has the following features:

• Unlike existing adaptive quantized control schemes, in this
paper the parameters of quantizers are allowed to be freely
changed during operation according to system performance
and communication burden. To handle the difficulty caused
by quantization, we introduce a linear time-varying model to
describe quantizers and estimate the bounds of the resulting
time-varying terms.With the aid of such efforts, our controllers
need no information about the parameters of quantizers.

• An improved hysteretic quantizer is introduced, which can
enhance the ability to reduce chattering in comparisonwith the
hysteretic quantizer in Zhou et al. (2014).

• Instead of the traditional K-filters employed in the existing
output-feedback adaptive quantized control scheme (Xing
et al., 2016), we construct a kind of high-gain K-filters to
estimate the unmeasured states, which is shown to be effective
to improve the tracking performance.

• The proposed scheme is totally decentralized and the effect
of interactions among subsystems is successfully compensated
for by introducing a smooth function. It is proved that the
overall closed-loop system is globally stable regardless of the
coarseness of quantizers.

The rest of this paper is organized as follows. In Section 2,
the control problem is introduced. In Section 3, the adaptive con-
trollers design is presented, followed by the stability analysis in
Section 4. Section 5 gives the simulation results to illustrate the
effectiveness of the proposed scheme. Finally, we conclude in Sec-
tion 6.

2. Problem formulation

Consider an interconnected nonlinear system consisting of N
single-input single-output subsystems in output-feedback form,
given by

ẋi = Aixi + ϕi(yi)θi + biηi(yi)Qi(ui)+ fi(y1, . . . , yN , t),
yi = xi,1, i = 1, . . . ,N,

Ai =

0
... Ini−1
0 · · · 0

 ∈ Rni×ni , bi = [0 · · · 0 b̄Ti ]
T

∈ Rni , (1)

where xi = [xi,1, . . . , xi,ni ]
T

∈ Rni , Qi(ui) ∈ R and yi ∈ R are the
states, input and output of the ith subsystem, respectively; Ini−1

is the (ni − 1) × (ni − 1) identity matrix; θi ∈ Rιi and b̄i =

[bi,mi , . . . , bi,0]
T

∈ Rmi+1 with bi,mi ≠ 0 are unknown constants;
ϕi(yi) ∈ Rni×ιi and ηi(yi) ∈ R with ηi(yi) ≠ 0 are known smooth
functions; fi ∈ Rni are unknown interactions among subsystems;
and ρi := ni − mi > 1. The states xi,2, . . . , xi,ni are unmeasured
and each subsystem is preceded by a quantizer falling into the
following two types:

• Logarithmic quantizer (Hayakawa et al., 2009a,b):

Qi(ui) =


(1 + δi)pi,j, if pi,j ≤ ui < pi,j+1,
0, if 0 ≤ ui < pi,1,
−Qi(−ui), if ui < 0.

(2)

• Hysteretic quantizer:

Qi(ui) =



pi,j, if
pi,j

1 + δi
< ui ≤ pi,j, Q−

i ≥ pi,j,

or pi,j ≤ ui <
pi,j

1 − δi
, Q−

i ≤ pi,j,

(1 + δi)pi,j,

if pi,j < ui ≤
pi,j

1 − δi
, Q−

i ≥ (1 + δi)pi,j,

or
pi,j

1 − δi
≤ ui < pi,j+1, Q−

i ≤ (1 + δi)pi,j,

0, if 0 ≤ ui ≤
pi,1

1 + δi
,

or
pi,1

1 + δi
< ui < pi,1, Q−

i = 0,

−Qi(−ui), if ui < 0.

(3)

In (2) and (3), δi =
1−ϵi
1+ϵi

and pi,j = aiϵ
1−j
i with 0 < ϵi < 1, ai > 0

and j = 1, 2, 3, . . . . The parameter ai determines the size of the
dead-zone for Qi(ui), and ϵi is a measure of quantization density.
The smaller the ϵi is, the coarser the quantizer is. In (3), Q−

i (t)
is the latest value of Qi before the time instant t and Q−

i (0) :=

0. Mathematically, Q−

i (t) = 0 for t ∈ [0, Ti,1] and Q−

i (t) =

Qi(ui(Ti,h)) for t ∈ (Ti,h, Ti,h+1], where Ti,h (h = 1, 2, 3, . . .) with
0 ≤ Ti,1 < Ti,2 < Ti,3 < · · · ≤ +∞ denotes the time instants
when Qi(ui) makes transitions. The maps of (2) and (3) for ui ≥ 0
are plotted in Figs. 1 and 2, respectively.

Remark 1. Compared with the logarithmic quantizer (2), the
hysteretic quantizer (3) has additional quantization levels and can
reduce chattering because whenever its output makes a transition
from one value to another, some dwell time will elapse before
a new transition can occur. Similar discussion can be found in
Hayakawa et al. (2009b).

Remark 2. The hysteretic quantizer (3) can be considered as an
improved version of the hysteretic quantizer in Zhou et al. (2014).
The latter involves u̇i and its output may make transitions at every
point of quantization levels if the sign of u̇i changes frequently,
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