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a b s t r a c t

This paper studies exponential stability properties of a class of two-dimensional (2D) systems called
differential repetitive processes (DRPs). Since a distinguishing feature of DRPs is that the problem domain
is bounded in the ‘‘time’’ direction, the notion of stability to be evaluated does not require the nonlinear
system defining a DRP to be stable in the typical sense. In particular, we study a notion of exponential
stability along the discrete iteration dimension of the 2D dynamics, which requires the boundary data
for the differential pass dynamics to converge to zero as the iterations evolve. Our main contribution is to
show, under standard regularity assumptions, that exponential stability of a DRP is equivalent to that of its
linearized dynamics. In turn, exponential stability of this linearization can be readily verified by a spectral
radius condition. The application of this result to iterative learning control (ILC) is discussed. Theoretical
findings are supported by a numerical simulation of an ILC algorithm.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

For recursive nonlinear systems in the explicit form
ẋk+1(t) = f (xk+1(t), yk(t), t),
yk+1(t) = g(xk+1(t), yk(t), t),

(1)

where (t, k) ∈ [0, T ] × {0, 1, . . .} for some T ∈ [0, ∞), we are
interested in finding necessary and sufficient conditions that es-
tablish local exponential stability. The vectors xk(t) ∈ Rn and
yk(t) ∈ Rm of this model represent the state and output, respec-
tively. To uniquely determine the solution of (1), it will be neces-
sary to specify boundary conditions y0 and x(0) , {xk+1(0)}∞k=0.

Roughly speaking, the notions of stability to be studied
throughout this paper will be weak, in the sense that they will not
require the one-dimensional (1D) control system given by f to be
stable. For example, exponential stability of (1) will imply that the
function sequence {yk}∞k=0 converges exponentially to zero in an
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appropriate signal norm, provided the boundaries are small, and
x(0) also converges exponentially to zero. The precise meaning of
stability for this class of systems will be defined later in Section 2.

The nonlinear system (1) appears in many practical problems
of interest and falls into the larger class of two-dimensional (2D)
dynamic systems called repetitive (or multipass, earlier in the lit-
erature) processes (not to be confused with repetitive control), in
which information propagation occurs along two axes of indepen-
dent variables. These processes are characterized by a sequence of
passes with finite length that act as forcing functions on the dy-
namics of future passes (Rogers, Eric, Galkowski, & Owens, 2007):
The output solution sequence {yk}∞k=0 of (1) can be found by apply-
ing the nonlinear system with differential dynamics described by
the functions f and g in a repetitive manner. Hence, we will call
any system of the form (1) a differential repetitive process (DRP).
The counterpart of the DRP (1) in the broader 2D systems theory,
where it is assumed that T = ∞, will be called a 2Dmixed contin-
uous–discrete time system.

The repetitive process paradigm arises in the modeling of
certain engineering applications such as long wall coal cutting
(Edwards, 1974) and metal rolling (Foda & Agathoklis, 1992). A
rich set of examples to these systems can also be found on a more
abstract level since recursive algorithms for 1D dynamic systems
can be treated as repetitive processes; e.g. iterative solutions
to nonlinear optimal control problems (Gupta, Hudson, Bloch, &
Kolmanovsky, 2013), nonlinear inversion methods (Devasia, Chen,
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Fig. 1. AM systems as repetitive processes: The substrate topography determines
the initial output y0 . The operator Γ maps the initial state (x3)init and input v3
of pass 3 (in-layer dynamics), along with the prior pass profile y2 (layer-to-layer
dynamics), to pass profile y3 . The layer-to-layer dynamics is affected by physical
phenomena such as material curing.

& Paden, 1996), iterative estimation and control design (Albertos
& Sala, 2002), or the constructive proof of the Picard–Lindelöf
theorem. A well-known class of algorithms that can be expressed
in the repetitive process framework is iterative learning control
(ILC) (Ahn, Chen, & Moore, 2007; Hladowski et al., 2010; Kurek
& Zaremba, 1993), wherein the inverse image of a desired
output under a 1D input–output system is constructed through a
recurrence relation inducing pass-to-pass dynamics. This problem
will be tackled in Section 5.

The study of DRPs and other 2D systems bearing similari-
ties with (1) has a long history, beginning with the Roesser and
Fornasini–Marchesini models introduced in the 1970s (Fornasini
& Marchesini, 1976, 1978; Roesser, 1975). In particular, stabil-
ity and performance properties of DRPs and 2D mixed contin-
uous–discrete time systems, along with corresponding control
strategies, have been researched extensively, predominantly for lin-
ear time-invariant (LTI) systems—see Chesi and Middleton (2014)
and Rogers et al. (2007) and references therein. On the other
hand, the need to develop rigorous stability tests in the nonlinear
systems context has been highlighted only very recently. Among
these works, Yeganefar, Yeganefar, Ghamgui, and Moulay (2013)
present forward and converse Lyapunov theorems for nonlinear
Roesser models, with extensions to the stochastic case given in
Pakshin, Galkowski, and Rogers (2011), and a 2D Lyapunov func-
tion approach is employed to prove exponential stability of DRPs in
Emelianov, Pakshin, Galkowski, and Rogers (2014). It is also worth
noting that the DRP (1) can be viewed as an infinite-dimensional
hybrid system (Barreiro & Baos, 2010; Liu & Teel, 2016) by con-
catenating the passes; e.g. by letting x(τ , k + 1) , xk+1(t) with
τ = t + kT , subject to the periodic reset x(kT , k + 1) = xk+1(0),
where T plays the role of an inherent delay, τ the ordinary time,
and k the jump time/index. As this reset function would change
based on the prespecified boundary condition x(0) and lacks any
other structure, we will not follow a hybrid systems approach in
the ensuing analysis. See also Rogers et al. (2007) for DRP model-
ing of a class of delay differential equations.

The objective of this paper is to contribute to the recent liter-
ature on nonlinear repetitive process and 2D systems literature,
and provide a connection between nonlinear DRPs of the form (1)
and their linear counterparts. Therefore, our aim is to certify lo-
cal exponential stability of DRPs via an appropriate linearization
of (1), and establish an analogue of the classical result that expo-
nential stability of a 1D system is equivalent to that of its linear
approximation, thereby expanding on the findings of Altın and Bar-
ton (2015). Our primary motivation for this study comes from ad-
ditive manufacturing (AM) systems, wherein material in the fluid
phase is often deposited in a layer-by-layer fashion (Fig. 1), lead-
ing to 2D dynamics: For instance, the laser metal deposition (LMD)
process is characterized by 1D (in-layer) dynamics that are height
dependent due to heat transfer from prior layers (Sammons, Bris-
tow, & Landers, 2013). It is possible to achieve accurate material

distribution for the LMD process via linear repetitive process con-
trol techniques and a more control-oriented model consisting of
static nonlinearities. This, however, requires the implicit assump-
tion that the controlled nonlinear process is locally stable around
its linearized equilibrium (Sammons, Bristow, & Landers, 2014). As
a secondarymotivation, in the ILC literature, it has been noted that
nonlinear update laws have not been researched, save for adaptive
laws for locally Lipschitz plants, and a systematic theory of nonlin-
ear ILC is an open question (Xu, 2011).

The rest of the paper is organized as follows: Section 2
introduces the necessary background, establishes the key Lipschitz
property of the nonlinear operator, and states formal stability
definitions. Stability theory for LTI systems is extended to the
linear time-varying (LTV) case in Section 3. Our main result, which
establishes equivalence in terms of exponential stability between
a DRP and its linearization, is presented in Section 4. Applications
of this result to exponential stability analysis of ILC are discussed in
Section 5. An illustrative example is given in Section 6 through an
ILC system. Concluding remarks are given in Section 7. In the hope
of improving readability of the paper, the proof of Proposition 14
is given in the Appendix. Proofs of certain immediate technical
results are omitted for brevity and can be found in Altın and Barton
(2017).

2. Background and preliminaries

This section will introduce the background material pertinent
to our analysis, and lay out stability definitions for the DRP (1). The
precise definitions of stability to be presentedwill show the crucial
difference between DRPs and 2D mixed continuous–discrete time
systems, as the latter studies the trajectory of the real vector yk(t)
over {0, 1, . . .}×[0, ∞). In linear repetitive process theory, the gap
between these two classes of systems is bridged via the stronger
notion of stability along the pass (Rogers et al., 2007), which
requires the stability parameters to be T independent. Although
this property is desirable in experimental implementations
or numerical simulations, we will forgo this requirement for
theoretical purposes.

Notation. We use R to represent real numbers, N nonnegative
integers, and C complex numbers. The spectral radius of a linear
operator is denoted by ρ(.). The identity and zero operators are
denoted as I and 0, respectively. For a real vector, ∥.∥ denotes
any of the equivalent norms in Rp. Lp is the space of Lebesgue
measurable functions on the compact interval [0, T ]with finite Lp
norm, p ∈ [1, ∞]. The space of all sequences onRp which converge
to 0 is denoted as c0.

The inequalities below, stated without proof, will be of use
for convergence analysis. Note that the convergence parameters
2/(1 − a) ≥ 1 and (1 + a)/2 ∈ (0, 1) are continuous increasing
functions of a on (0, 1).

Claim 1. Let a , {ak+1}
∞

k=0 and b , {bk+1}
∞

k=1 be real nonnegative
sequences, where b is bounded. Suppose that ak+1 = rak + bk+1 for
some r ∈ (0, 1) for all k ∈ N. Then, lim supk→∞ ak ≤ (1/(1 −

r)) lim supk→∞ bk, and therefore b ∈ c0 implies a ∈ c0.

Claim 2. Let a ∈ (0, 1). Then the sequence {kak−1
}
∞

k=0 is exponen-
tially convergent and

kak−1
≤

2
1 − a


1 + a
2

k

, ∀k ∈ N.
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