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a b s t r a c t

This paper is concerned with finite horizon stabilization control for a class of discrete time stochastic
systems subject to multiplicative noise and input delay. By constructing a new cost function, a complete
solution to the problem of finite horizon stabilization is given for the first time based on previous work
Zhang et al. (2015). It is shown that the system can be stabilized in the mean square sense with the
receding horizon control (RHC) if and only if two new inequalities on the terminal weightingmatrices are
satisfied.Moreover, the two inequalities can be solved by using iterative algorithm. The explicit stabilizing
controller is derived by solving a finite horizon optimal control problem. Simulations demonstrate the
effectiveness of the proposed method.

© 2017 Published by Elsevier Ltd.

1. Introduction

In the past few decades, receding horizon control (RHC, also
known as model predictive control) has attracted interest from
the control community because of its applicability in chemical,
automotive, and aerospace processes. A considerable amount of
research effort has been devoted to RHC, e.g., see Garcia, Prett,
and Morari (1989), Mayne (2014), Mayne, Rawlings, Rao, and
Scokaert (2000), Richalet, Rault, Testud, and Papon (1978) and
the references therein. The basic concept of RHC is to solve an
optimization problem on the finite horizon at the current time
and implement only the first solution as the current control. This
procedure is then repeated at the next time step.

The stabilization problem as one of fundamental problems
has been studied extensively based on RHC. Kwon et al. (Kwon
& Pearson, 1977) originally studied the stabilizing property of
the RHC law for linear systems. This idea was then generalized
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to stochastic systems and time delay systems (Bernardini &
Bemporad, 2012; Cannon, Kouvaritakis, &Wu, 2009a,b; Chatterjee,
Hokayem, & Lygeros, 2011; Chatterjee & Lygeros, 2015; Hessem
& Bosgra, 2003; Hokayem, Cinquemani, Chatterjee, Ramponi, &
Lygeros, 2012; Kwon, Lee, & Han, 2004; Lee & Han, 2015; Park,
Yoo, Han, & Kwon, 2008; Perez & Goodwin, 2001; Primbs & Sung,
2009;Wei & Visintini, 2014). Chatterjee et al. (2011) and Hokayem
et al. (2012) investigated the RHC for additive noise systems. In
Chatterjee et al. (2011), the optimization problem was solved by
using a vector spacemethod that ensured the variance of state was
bounded. In Hokayem et al. (2012), incomplete state information
was considered and a Kalman filter was used to estimate the
optimal state. RHC bounded the state of the overall systems in the
mean square sense. Refs. Cannon et al. (2009a) and Primbs and
Sung (2009) studied RHC for systems with multiplicative noise. In
Cannon et al. (2009a), the concept of probability invariance was
introduced to ensure the stability of a closed-loop system,whereas
Primbs and Sung (2009) used semi-definite programming to solve
the optimization problem and the stability of the closed-loop
systemwas ensured under a specific terminal weight and terminal
constraint. In Cannon et al. (2009b), a system with both additive
and multiplicative noise was considered based on RHC. Other
related RHC stochastic problems can be found in Bernardini and
Bemporad (2012), Chatterjee and Lygeros (2015), Hessem and
Bosgra (2003), Perez and Goodwin (2001) and Wei and Visintini
(2014). Systems with time delay have also been subjected to
RHC (Kwon et al., 2004; Lee & Han, 2015; Park et al., 2008). For
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instance, Kwon et al. (2004) studied RHC for a system with state
delay and used a linear matrix inequality (LMI) condition on the
terminal weighting matrices to guarantee the stability of a closed-
loop system. In Park et al. (2008), a system with input delay
was investigated based on RHC, and a stabilization condition was
derived based on LMI. Ref. Lee and Han (2015) also considered
RHC stabilization for a system with state delay. By proposing
a more generalized cost function, a delay dependent stability
condition was obtained. However, it is notable that time delay and
multiplicative noise have been considered separately in all of the
aforementioned studies and the references therein.When a system
has both time delay and multiplicative noise, the control problem
is particularly difficult. One of the obstacles is that the separation
principle does not hold for stochastic systems with multiplicative
noise.

In this article, we discuss the RHC stabilization of discrete
time linear systems with both multiplicative noise and input
delay. Our aim is to determine the RHC stabilization condition,
and derive the RHC stabilization controller when this condition
is met. The main contributions of this paper are three-fold: First,
we construct a novel cost function that includes two terminal
weighting matrices. An explicit stabilizing controller is obtained
by solving this finite horizon optimal control problem. Second, a
necessary and sufficient condition for the stabilization of delayed
stochastic systems is developed. Under some mild assumptions,
it is shown that the system can be stabilized in the mean square
sense if and only if two inequalities regarding terminal weighting
matrices are satisfied. Third, by introducing a slack variable, an
iterative algorithmhas beenproposed to solve the two inequalities.

The remainder of this paper is organized as follows. Section 2
presents the formulation of the problem for stochastic systems
with multiplicative noise and input delay. In Section 3 the
corresponding RHC law and the necessary and sufficient condition
for the asymptotic mean square stability of the closed-loop system
are derived. The iterative algorithm to solve the two inequalities
is also discussed in Section 3. A numerical example to validate the
performance of the proposed RHC is provided in Section 4. Finally,
our conclusions are given in Section 5.

The following notations are used throughout the paper. Rn

denotes the n dimensional Euclidean space. The subscript ′

represents the matrix transpose; a symmetric matrix M >
0(≥ 0) means that it is strictly positive definite (positive semi-
definite). {Ω, F , P , {Fk}k≥0}denotes a complete probability space
onwhich some scalar white noiseωk is defined such that {Fk}k≥0 is
the natural filtration generated byωk, i.e.,Fk = σ {ω0, . . . , ωk}. Let
x̂k|m = Em−1(xk), where Em−1(xk) is the conditional expectation of
xk with respect toFm−1. E(·)denotes themathematical expectation
over the noise {ωk, k ≥ 0}.

2. Problem statement

Consider the following linear discrete time stochastic system
with input delay:

xk+1 = (A + ωkĀ)xk + (B + ωkB̄)uk−d, (1)

with the initial condition x0, u−d, u−d+1, . . . , u−1. For the conve-
nience of later discussion, let Ak = A + ωkĀ, Bk = B + ωkB̄. Then,
system (1) becomes

xk+1 = Akxk + Bkuk−d, (2)

where xk ∈ Rn is the state; uk ∈ Rm is the input with delay d > 0;
Ā, B̄, A, and B are matrices of appropriate dimensions; and ωk is a
scalar random white noise with zero mean and variance σ .

The problem to be solved in this paper is formulated as follows:
Find the Fk−d−1-measurable controller uk−d = Hx̂k|k−d, k ≥ d,
such that the closed-loop system xk+1 = Akxk + BkHx̂k|k−d is
asymptotically mean square stable, i.e., limk→∞ E(x′

kxk) = 0.

Remark 1. Note that the results presented in this paper are ap-
plicable to more general systems of multiple multiplicative noises
with no substantial difference:

xk+1 = (A + ω
(1)
k Ā)xk + (B + ω

(2)
k B̄)uk−d,

where ω
(1)
k ≠ ω

(2)
k .

3. Receding horizon control for discrete time stochastic sys-
tems with input delay

In this section, we present results for the asymptotic mean
square stability for discrete time stochastic systems with input
delay (1). The RHC solution is given first.

3.1. Receding horizon control

To solve the problem formulated in Section 2, we first introduce
the following function:

J(xk, U
(d)
k , k, k + N, Uk)

=

N
i=0

x′

k+iQxk+i +

N−d
i=0

u′

k+iRuk+i + (xk+N+1)
′

× P (1)xk+N+1 + (xk+N+1)
′

d+1
i=2

P (i)x̂k+N+1|k+N+i−d−1,

where xk and U
(d)
k = (uk−1, . . . , uk−d) are known values at time

k; Uk = (uk, . . . , uk+N−d) is the control to be determined; Q ≥ 0,
R > 0, and N is a finite positive integer. For the convenience of
discussions in the below, we denote the cost function as:

Jk−1(xk, U
(d)
k , k, k + N, Uk)

= Ek−1


J(xk, U

(d)
k , k, k + N, Uk)


, (3)

where Ek−1[J(xk, U
(d)
k , k, k+N, Uk)] is the conditional mathemat-

ical expectation given Fk−1 = σ {ω0, . . . , ωk−1}.
It is assumed that theweightingmatrices P (i), i = 1, 2, . . . , d+

1 satisfy P (1) > 0, P (2)
≤ 0, and

P (i)
= (A′)i−2P (2)Ai−2, i = 3, . . . , d + 1, (4)

d+1
i=1

P (i) > 0.

Note that once P (2) is given, P (i), i = 3, . . . , d + 1 are determined
by (4). Thus, there are only two independent terminal weighting
matrices, P (1) and P (2). We shall show that the two matrices P (1)

and P (2) play a key role in designing the RHC to guarantee mean
square stability.

Remark 2. The cost function (3) is nonnegative. Because

Ek−1


(xk+N+1)

′P (1)xk+N+1 + (xk+N+1)
′

d+1
i=2

P (i)

× x̂k+N+1|k+N+i−d−1


≥ Ek−1


(xk+N+1)

′

d+1
i=1

P (i)xk+N+1


≥ 0,

Q ≥ 0 and R > 0,we have that the cost function (3) is nonnegative.

Remark 3. Considering the input delay in the stochastic system
(1), the terminal terms of the cost function herein are given by

(xk+N+1)
′P (1)xk+N+1 + (xk+N+1)

′

d+1
i=2

P (i)x̂k+N+1|k+N+i−d−1
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