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a b s t r a c t

Pointwise asymptotic stability, or semistability, is a property of the set of equilibria of a dynamical system,
where every equilibrium is Lyapunov stable and every solution is convergent to some equilibrium. Under
an appropriate version of asymptotic controllability assumption, it is shown that the property can be
achieved in a hybrid control system by open-loop optimal solutions of an infinite-horizon optimal control
problem. For discrete-time systems, the optimal solutions can be generated by feedback. Regularity of the
optimal value function and the existence of hybrid optimal controls are also studied.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The set of equilibria of a dynamical system is pointwise asymp-
totically stable (PAS), also termed semistable, if every equilibrium is
Lyapunov stable and every solution converges to one of the equilib-
ria. This stability concept is appropriate for dynamical systems that
have a continuum of equilibria (Bhat & Bernstein, 2003), in which
case no equilibrium can be asymptotically stable in the usual sense,
and have seen application to consensus algorithms (Goebel, 2011;
Hui, Haddad, & Bhat, 2008),where the continuumof equilibria con-
sists of consensus states; of hysteresis (Oh, Drincic, & Bernstein,
2009); etc. Semistability/PAS has been studied in continuous-time
(Bhat & Bernstein, 2003; Hui, Haddad, & Bhat, 2009), discrete-time
(Goebel, 2014b; Hui, 2012), and switched, impulsive, and hybrid
systems (Goebel & Sanfelice, 2016a,b; Hui, 2010, 2011b).

Optimal control has played a key role in the design of stabi-
lizing feedback for the usual asymptotic stability, from the clas-
sical LQR approach to linear systems (Anderson & Moore, 1990),
through nonlinear and constrained discrete-time systems (Keerthi
& Gilbert, 1988), to nonlinear and constrained continuous-time
systems (Clarke & Stern, 2003). Hybrid optimal control has seen
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increasing interest, see (Garavello & Piccoli, 2005) and the refer-
ences therein. Hybrid control systems (Sanfelice, 2013) based on
the framework of hybrid inclusions of Goebel, Sanfelice, and Teel
(2012), which combine differential equations or inclusions, differ-
ence equations or inclusions, and constraints on the resulting mo-
tions, have found applications, for example, in the analysis of gene
networks (Shu & Sanfelice, 2014), in the estimation of states in
mechanical systems with impacts (Forni, Teel, & Zaccarian, 2013),
and in the design of control for communication channels (Forni,
Galeani, Nešić, & Zaccarian, 2014). It is thus a natural question
whether optimal control can help in the design of feedback that
results in PAS.

Section 4 proposes an infinite-horizon optimal control
problem for a hybrid control system with a set of controlled equi-
libria, so that open-loop optimal solutions render the set of equi-
libria PAS. The optimal control problem is inspired in part by Bhat
and Bernstein (2010), where arc-length-based sufficient Lyapunov
conditions for semistability in continuous-time were given. A
hybrid version of the result by Bhat and Bernstein (2010), The-
orem 2.2, is in Section 3.1 Accordingly, the optimal control
problem penalizes the norm of the control, and the Lyapunov in-
equalities satisfied by the optimal value function ensure that op-
timal solutions have finite length. Combined with a penalty on

1 The result appears in the conference paper (Goebel & Sanfelice, 2016b) without
proof.
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the distance from the set of equilibria, this yields PAS. In compar-
ison, optimal control approaches to semistability in continuous-
time systems in Hui (2011a, 2012), or L’Afflitto, Haddad, and Hui
(2015) use quadratic costs and require further assumptions of Lya-
punov stability of each equilibrium to guarantee semistability. Fur-
thermore, these approaches associate a separate optimal control
problem with each equilibrium. In contrast, the problem in Sec-
tion 4 does not penalize the distance from any particular equilib-
rium but from the whole set of them.

In discrete time, optimal solutions that result in PAS can be
generated by feedback, as shown in Section 6.2 Related existing
feedback designs for PAS, in continuous or discrete-time, appear
limited to linear dynamics, for example second integrators in con-
tinuous time in Hui et al. (2008), and a similar comment applies to
the related consensus literature; see (Qu, Wang, & Hull, 2008) and
(Kim, Shim,& Seo, 2011) and the references therein. An approach to
achieving PAS by feedback for a nonlinear continuous-time control
system, proposed by the author in Goebel (2014a) and based on the
patchy feedback idea (Ancona & Bressan, 2003) appears to have a
flaw. Given the technical challenges in formulating optimal feed-
back for a general nonlinear control problem in continuous time
(see the survey Frankowska, 2010 and the references therein) or
in feedback stabilization of nonlinear systems in continuous time
(Clarke & Stern, 2003), optimal feedback for PAS in a continuous-
time or hybrid system is left for future research.

Existence of optimal control is far more challenging in contin-
uous time than in discrete time, and has been treaded extensively
in the literature. For hybrid control systems in the framework of
Goebel et al. (2012) and Sanfelice (2013), there appears to be no
general existence results.Without addressing the continuous-time
case, for the problem from Section 4, it is shown in Section 5 that
if existence and lower semicontinuity of the optimal value func-
tion for the continuous-timepart of the hybrid systemhold, then so
they do for the hybrid system, under a mild condition on the data.

2. Hybrid inclusions and pointwise asymptotic stability

Hybrid inclusions, as represented below, model hybrid dynam-
ical systems.

x ∈ C ẋ ∈ F (x)
x ∈ D x+

∈ G (x) . (1)

For details, see Goebel, Sanfelice, and Teel (2009); Goebel et al.
(2012). Above, C,D ⊂ Rn are sets, and F ,G : Rn ⇒ Rn are set-
valued mappings.

A set E ⊂ R2 is a hybrid time domain if it is a union of finitely or
infinitely many intervals [tj, tj+1] × {j}, where 0 = t1 ≤ t2 ≤ · · ·,
with the last interval, if it exists, possibly of the form [tj, tj+1)
or [tj,∞). A hybrid arc is a function φ : domφ → Rn, where
the domain domφ of φ is a hybrid time domain and, if Ij(φ) :=

{t | (t, j) ∈ domφ} has nonempty interior, then t → φ(t, j) is
locally absolutely continuous on Ij. A hybrid arc φ : domφ → Rn is
a solution to (1) if φ(0, 0) ∈ C ∪D, where C is the closure of C , and
• if Ij(φ) has nonempty interior intIJ(φ), then φ(t, j) ∈ C for all

t ∈ intIj(φ) and d
dt φ(t, j) ∈ F(φ(t, j)) for almost all t ∈ Ij(φ);

• if (t, j) ∈ domφ and (t, j + 1) ∈ domφ then φ(t, j) ∈ D and
φ(t, j + 1) ∈ G(φ(t, j)).

A solutionφ : domφ → Rn ismaximal if it cannot be extended, and
complete if domφ is unbounded. Below, S is the set of all maximal
solutions to (1), S(x) is the set ofmaximal solutions to (1) that start
from x.

Definition 2.1. A set A ⊂ Rn is pointwise asymptotically stable for
(1) if:

2 The discrete-time case was studied in the conference paper (Goebel, 2016),
where under further assumptions robustness of the feedback was addressed.

(a) every a ∈ A is Lyapunov stable: for every a ∈ A, every ε > 0
there exists δ > 0 such that, for every φ ∈ S with ∥φ(0, 0) −

a∥ < δ and every (t, j) ∈ domφ, one has ∥φ(t, j)−a∥ < ε; and
(b) every φ ∈ S is bounded, and if it is complete, then

limt+j→∞ φ(t, j) exists and belongs to A.

Pointwise asymptotic stability, as defined above, is global, in
contrast to the local concept that requires (b) only for solutions
from a neighborhood of A. The usual understanding of asymptotic
stability of a set A does not require that every point in A be a
Lyapunov stable equilibrium, or even just an equilibrium. It also
does not require that solutions have limits; rather, it requires that
the distance of every solution from A decrease to 0.

Theorem 2.2. Suppose that there exists a function V : Rn
→

R, positive definite with respect to a nonempty and closed set A,
continuous at every a ∈ A, and such that there exist constants c, d >
0 and continuous functions c, d : Rn

→ [0,∞), positive definitewith
respect to A, such that the following two conditions hold:

(a) for every T > 0 and every solution φ : [0, T ] → Rn to ẋ ∈ F(x)
satisfying φ(t) ∈ C for t ∈ (0, T ),

V (φ(t))+

 T

0
c(φ(t)) dt + c

 T

0
∥φ̇(t)∥ dt ≤ V (φ(0)),

(b) for every x ∈ D and every g ∈ G(x),

V (g)+ d(x)+ d∥g − x∥ ≤ V (x).

Then A is pointwise asymptotically stable for (1).

Proof. Letφ ∈ S. The triangle inequality yields, for (T1, J1), (T2, J2)
∈ domφ with T1 + J1 ≤ T2 + J2, that ∥φ(T1, J1) − φ(T2, J2)∥ is
bounded above by

J2
j=J1

 tj+1

tj
∥φ̇(tj, j)∥ dt +

J2
j=J1+1

∥φ(tj, j)− φ(tj, j − 1)∥ (2)

where (tj, j), j ≤ J , and tJ2+1 = T2 describe the hybrid time domain
domφ between (T1, J1) and (T2, J2):

domφ ∩ ([T1, T2] × [J1, J2]) =

J2
j=J1

[tj, tj+1] × {j}. (3)

By (a) and (b), α (V (φ(J1, T1))− V (φ(J2, T2))) bounds (2) from
above, where α = 1/min{c, d}, and so

∥φ(T1, J1)− φ(T2, J2)∥ ≤ α (V (φ(J1, T1))− V (φ(J2, T2))) . (4)

In particular, ∥φ(0, 0) − φ(t, j)∥ ≤ αV (φ(0, 0)) for every (t, j) ∈

domφ and φ is bounded.
Pick a ∈ A and ε > 0. Pick δ ∈ (0, ε/2) so that ∥x − a∥ < δ

implies V (x) < ε/(2α), which is possible since V (a) = 0 and V
is continuous at a. By (4), every solution φ with ∥φ(0, 0) − a∥ <
δ satisfies ∥φ(t, j) − φ(0, 0)∥ < αV (φ(0, 0)) < ε/2. Since
∥φ(0, 0) − a∥ < ε/2, ∥φ(t, j) − a∥ < ε for every (t, j) ∈ domφ,
and this verifies Lyapunov stability of a.

Another consequence of (a) and (b) is that, for every solution φ
and (T , J) ∈ domφ, with (tj, j) as above,

J
j=0

 tj+1

tj
c(φ(t, j)) dt +

J
j=1

d(φ(tj, j − 1)) ≤ V (φ(0, 0)).

If φ is complete, for the quantity on the left above to remain
bounded as T + J → ∞, there must exist a sequence of points
(tk, jk) ∈ domφ with tk + jk → ∞ when k → ∞ such that
either c(φ(tk, jk)) or d(φ(tk, jk − 1)) converges to 0. Since φ is
bounded, without loss of generality one can say that eitherφ(tk, jk)
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