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a b s t r a c t

In this article, we introduce the joint maximum a posteriori state path and parameter estimator (JME)
for continuous-time systems described by stochastic differential equations (SDEs). This estimator can
be applied to nonlinear systems with discrete-time (sampled) measurements with a wide range of
measurement distributions. We also show that the minimum-energy state path and parameter estimator
(MEE) obtains the joint maximum a posteriori noise path, initial conditions, and parameters. These
estimators are demonstrated in simulated experiments, in which they are compared to the prediction
error method (PEM) using the unscented Kalman filter and smoother. The experiments show that the
MEE is biased for the damping parameters of the drift function. Furthermore, for robust estimation in the
presence of outliers, the JME attains lower state estimation errors than the PEM.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In the context of discrete-time systems, maximum a posteriori
(MAP) state path estimators have recently emerged as a powerful
alternative to Kalman filters and smoothers due to their robustness
properties and applicability to a larger class of models (Aravkin,
Bell, Burke, & Pillonetto, 2011; Aravkin, Burke, & Pillonetto,
2012b,c, 2013; Bell, Burke, & Pillonetto, 2009; Dutra, Teixeira,
& Aguirre, 2012; Farahmand, Giannakis, & Angelosante, 2011;
Monin, 2013). Awide variety of phenomena of engineering interest
are continuous-time in nature and can be modeled by stochastic
differential equations (SDEs). For this class of models, the MAP
state-path estimator is built upon theOnsager–Machlup functional
and is the solution to an optimal control problem (Aihara & Bagchi,
1999a,b; Zeitouni & Dembo, 1987).

To evaluate if a discretization of a variational optimizationprob-
lem is consistent, the concept of hypographical convergence is
used (cf. Polak, 2011). If a sequence of discretized problems hypo-
converges to a variational problem, then the discretized optima
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converge to the variational optima. In a previouswork (Dutra, Teix-
eira, & Aguirre, 2014), we showed that the discrete-timeMAP state
path estimator applied to trapezoidally discretized continuous-
time systems converges hypographically to the MAP state path
estimator of the continuous systems, as the discretization step
vanishes. However, when the Euler discretization is used instead
– themost widespread approach – the discretized estimator hypo-
converges to the minimum-energy estimator, whose estimates
were proved to be MAP noise paths. This implies that the dis-
cretized MAP estimates have a different interpretation depending
on the discretization scheme used.

In this work, we present the extension of the estimators of
Dutra et al. (2014) for joint state path and parameter estimation.
We introduce the joint MAP state path and parameter estimator
(JME) for continuous-time systems and also show that the joint
minimum-energy state path and parameter estimator (MEE)
corresponds to the jointMAP noise path, initial state and parameter
estimator. The JME andMEE are also the hypographical limits of the
trapezoidally-and Euler-discretized joint state path and parameter
estimators (Dutra, 2014, Chap. 3), respectively.

The fact that the parameter is estimated as a single vector
instead of a time-varying augmented state places the JME and
MEE in a similar niche to the Kalman-filter-based prediction error
method (PEM) (Kristensen, Madsen, & Jørgensen, 2004), to which
it is compared. Furthermore, if the joint state path and parameter
posterior distribution is unimodal and approximately symmetric,
the JME estimates should be close to the marginal MAP parameter
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estimates. Similarly, even when the parameters are not of interest,
the JME can be used as a state-path estimator under parametric
uncertainty.

The merit function of these estimators admits a tractable ex-
pression for a wide range of nonlinear systems, lending them a
wider applicability than Kalman-filter-based estimators. In par-
ticular, it is possible to use heavy-tailed measurement distribu-
tions which confer robustness against outliers (Aravkin et al.,
2011; Aravkin, Burke, & Pillonetto, 2012a; Aravkin et al., 2012b,c,
2013; Dutra et al., 2012; Farahmand et al., 2011). The resulting
estimators can be seen as an extension of Huber’s M-estimators
(Huber & Ronchetti, 2009, Sec. 3.2) to the smoothing problem.
M-estimates of location parameters using heavy-tailed distribu-
tions can be interpreted as implicit weighted means, with low
weights assigned to outlying observations. This approach ‘‘com-
bines conceptual simplicity with generality, since it can be applied
to a wide range of settings’’ (Lange, Little, & Taylor, 1989, p. 882).
A competing approach to robust estimation is to consider a family
of distributions in the neighborhood of a nominal guess and de-
sign filters or smoothers which guarantee the best behavior in the
worst-case scenario, i.e., minimax estimators (Levy & Nikoukhah,
2013; Zorzi, 2016).

The remainder of this article is organized as follows. In Section 2
we define the problem being tackled and common notation
and variables. In Section 3 the fictitious densities and the MAP
estimators are defined and presented. The simulated example
applications are presented in Section 4 and conclusions and future
work in Section 5.

2. Problem definition

In what follows, (Ω,F , P) is a standard probability space on
which all random variables are defined. Random variables will be
denoted by uppercase letters and their values by lowercase, so that
ifY : Ω → Y is aY-valued randomvariable, y ∈ Ywill denote spe-
cific values it might take. The same applies to stochastic processes.
The dependency on the random outcome ω ∈ Ω will be omitted
when unambiguous, to simplify the notation. For a random vari-
able Θ , supp(PΘ) denotes the topological support of its induced
measure. The time argument of functions may also be written as
subscripts for compactness.

Let X and Z beRm- andRn-valued stochastic processes, respec-
tively, representing the state of a system over the experiment in-
terval T := [0, T ] and satisfying the following system of SDEs:

dXt = f (t, Xt , Zt ,Θ) dt + G dWt , (1a)
dZt = h(t, Xt , Zt ,Θ) dt, (1b)

where f and h are the drift functions, the Rq-valued random
variable Θ is the unknown parameter vector, the full rank G ∈

Rm×m is the diffusion matrix, and W is an m-dimensional Wiener
process. This division of the state in two parts, X and Z , is done to
cover systems in which the evolution of some state variables is not
under directly influence of noise.

Consider, in addition, that some Y-valued random variable Y is
observed. We assume that the conditional distribution of Y , given
X = x, Z = z and Θ = θ , is absolutely continuous and admits
a density ψ with respect to a measure ν on the measurable space
(Y,BY), i.e., for all B ∈ BY ,

PY (B | X = x, Z = z,Θ = θ) =


B
ψ (y | x, z, θ) dν(y).

In this paper, we derive the joint MAP estimator for X , Z0 and
Θ , given y ∈ Y. Note that, conditioned on that, the whole Z
path is also uniquely defined. We also prove that the minimum-
energy estimator is the joint MAP estimator for W , X0, Z0 and Θ .
We use the abstract definitions of mode and the MAP estimator of

Dutra et al. (2014, Defns. 1 and 2), which cover random variables
over infinite-dimensional spaces such as state paths of continuous-
time systems. These definitions can be better understood using
the concept of a fictitious density, which we introduce formally
in the definition below. Similar terminology was applied to the
Onsager–Machlup functional in this context, it was described as
an ideal density with respect to a fictitious uniform measure by
Takahashi and Watanabe (1981, p. 433) and as a fictitious density
by Zeitouni (1989, p. 1037).

Definition 1 (Dutra, 2014, Defn. 2.4). Let A be an A-valued random
variable, where (A, d) is a metric space. The function ζ : A → R

is a fictitious density if ζ (a) > 0 for at least one a ∈ A and there
exists ξ : R>0 → R>0 such that

lim
ϵ↓0

P (d(A, a) < ϵ)

ξ(ϵ)
= ζ (a) for all a ∈ A.

The fictitious density can be understood as a density with
respect to a metric. It quantifies the concentration of probability
in the neighborhood of a point. When, for some a′, a′′

∈ A, the
fictitious density ζ (a′) > ζ(a′′), then the ϵ-balls around a′ have a
larger probability than those around a′′, for all sufficiently small
ϵ. This means that the MAP estimates according to Dutra et al.
(2014, Defn. 2) are themaxima of the posterior fictitious density. It
should be noted that for Euclidean spaces any fictitious density is
proportional to the probability density function in the usual sense.
We now show the application of these concepts to the state paths
and parameters of the system described by (1).

3. MAP and minimum energy estimators

The following assumptions will be made on the system’s
probabilistic and dynamical model.

Assumption 2. a. The initial states X0, Z0 and the parameter
vectorΘ are F0-measurable and admit a continuous joint prior
density π with respect to the Lebesgue measure.

b. The functions f and h are uniformly continuous with respect to
all their arguments for θ ∈ supp(PΘ).

c. For all fixed θ ∈ supp(PΘ), the functions f and h are Lipschitz
continuous with respect to their second and third arguments x
and z, uniformly over their first argument t .

d. For all fixed θ ∈ supp(PΘ), the function f is twice differentiable
with respect to its second argument x and differentiable with
respect to its first and third arguments t and z. Furthermore, its
first and second derivatives mentioned above are continuous
with respect to all arguments, for all θ ∈ supp(PΘ).

e. The system is such that

E

exp

 T

0

G−1f (t, Xt , Zt ,Θ)
2

dt


< ∞.

f. The measurement likelihood ψ is continuous with respect to
the given x, z and θ .

g. The observed y value has a positive prior predictive density, i.e.,
E [ψ(y|X, Z,Θ)] > 0.

In what follows, we will denote by Hd the space of absolutely
continuous x : T → Rd with square integrable weak derivatives ẋ.
For x ∈ Rd, ∥x∥ will denote its Euclidean norm. Furthermore, |||·|||
will denote the supremum norm of continuous functions from T
to Rd:

|||w||| := sup
t∈T

∥w(t)∥ .

The divergence of a vector field function f , with respect to a
variable x is denoted divx f , i.e., divx f =


k
∂ fk
∂xk

.
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