
Automatica 81 (2017) 429–437

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Stabilization by using artificial delays: An LMI approach✩

Emilia Fridman, Leonid Shaikhet
School of Electrical Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel

a r t i c l e i n f o

Article history:
Received 21 September 2016
Received in revised form
27 December 2016
Accepted 7 March 2017

Keywords:
Time-delay
Stabilization by using artificial delay
Lyapunov–Krasovskii method
LMIs

a b s t r a c t

Static output-feedback stabilization for the nth order vector differential equations by using artificial
multiple delays is considered. Under assumption of the stabilizability of the system by a static feedback
that depends on the output and its derivatives up to the order n − 1, a delayed static output-feedback
is found that stabilizes the system. The conditions for the stability analysis of the resulting closed-loop
system are given in terms of simple LMIs. It is shown that the LMIs are always feasible for appropriately
chosen gains and small enough delays. Robust stability analysis in the presence of uncertain time-varying
delays and stochastic perturbation of the system coefficients is provided. Numerical examples including
chains of three and four integrators that are stabilized by static output-feedbacks with multiple delays
illustrate the efficiency of the method.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

It is well-known that some classes of systems (e.g. chains
of integrators or oscillators, inverted pendulums) that cannot
be stabilized by memoryless static output-feedbacks, can be
stabilized by using static output-feedbacks with delays (French,
Ilchmann, &Mueller, 2009; Karafyllis, 2008; Kharitonov, Niculescu,
Moreno, &Michiels, 2005;Michiels & Niculescu, 2014; Niculescu &
Michiels, 2004). The idea of feedback design in this case is usually
based on the employing of a stabilizing feedback that depends on
the output derivatives, and further approximation of the output
derivatives (e.g. by finite differences). In the existing works it is
proved that the resulting delayed static output-feedback stabilizes
the system for small enough delays. However, efficient and simple
conditions for the design and robustness analysis are missing.

The objective of the present paper is to fill this gap for systems
that are governed by nth order vector differential equation and
that can be stabilized by a static feedback that depends on the
output and its derivatives up to the order n − 1. Some first results
for n = 2 were obtained recently in Fridman and Shaikhet
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(2016), where simple LMIs for robust stability analysis of the
closed-loop delayed systemswere derived. Comparatively tomore
general LMIs for stability analysis of time-delay systems provided
e.g. in Gu, Kharitonov, and Chen (2003) and Seuret and Gouaisbaut
(2013) (that may also be applicable to delay-induced stability), the
conditions of Fridman and Shaikhet (2016) are essentially simpler
leading in numerical examples to slightly more conservative
results. Moreover, differently from Gu et al. (2003) and Seuret and
Gouaisbaut (2013), the feasibility of LMIs was justified in Fridman
and Shaikhet (2016) for small enough delays.

In the present paper, we suggest a new idea to represent the
delayed outputs in the form of Taylor expansion with the integral
(Lagrange) form of the remainder. This leads to novel controller
design and robust stability analysis via a novel simple Lyapunov
functional. For n = 2, the suggested Lyapunov functional is
different from the one of Fridman and Shaikhet (2016) and leads
to less restrictive conditions. However, as in Fridman and Shaikhet
(2016), this method employs a Lyapunov functional depending on
the state derivative that seems to benot applicable to the stochastic
case.

For the stochastic case, we develop the model transformation-
based analysis initiated in Borne, Kolmanovskii, and Shaikhet
(2000) and Shaikhet (2013) and applied in Fridman and Shaikhet
(2016). The feasibility of the resulting LMIs is justified for
appropriately chosen gains and small enough delays. Extension
to time-varying delays and stochastic perturbations is considered.
Numerical examples including chains of three and four integrators
illustrate the efficiency of the results.
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2. Problem formulation and preliminaries

Consider the nth order vector system

y(n)(t) =

n−1
i=0

Aiy(i)(t) + Bu(t), (2.1)

where y(t) = y(0)(t) ∈ Rk is the measurement, y(i)(t) is the
ith derivative of y(t), u(t) ∈ Rm is the control input, Ai ∈ Rk×k

and B ∈ Rk×m are constant matrices. Assume that the open-loop
system is unstable, and we are looking for a simple static output-
feedback that will stabilize the system. It may happen that (2.1) is
not stabilizable by u(t) = K0y(t), but may be stabilizable by using
artificial multiple delays (Karafyllis, 2008; Niculescu & Michiels,
2004).

Denote

x(t) = col{y(0)(t), . . . , y(n−1)(t)}

= col{x0(t), . . . , xn−1(t)},
B̄ = col{0, . . . , 0, B} ∈ Rnk×m,

A =


0 Ik 0 · · · 0
0 0 Ik · · · 0
. . . · · · · · · · · · · · ·

0 0 0 · · · Ik
A0 A1 A2 · · · An−1

 ∈ Rnk×nk.

(2.2)

Then (2.1) can be presented as

ẋ(t) = Ax(t) + B̄u(t). (2.3)

Assume that the pair (A, B̄) is stabilizable, i.e. there exists a matrix
K̄ = [K̄0 . . . K̄n−1] ∈ Rm×nk such that the matrix D = A + B̄K̄ is
Hurwitz. The corresponding state-feedback has a form

u(t) =

n−1
j=0

K̄jxj(t), K̄j ∈ Rm×k.

Since the derivatives y(j)(t) = xj(t), j = 1, . . . , n−1 are not avail-
able, we approximate them by using the delayed measurements
x0(t − hj)(j = 1, . . . , n − 1), where

0 < h1 < · · · < hn−1. (2.4)

Differently from Fridman and Shaikhet (2016), we employ in
this paper the Taylor expansion with the integral form of the
remainder:

x0(t − hi) =

n−1
j=0

1
j!
(−hi)

jxj(t) + Wi(xnt), i = 1, . . . , n − 1,

(2.5)

where

Wi(xnt) =
(−1)n

(n − 1)!

 t

t−hi
(s − t + hi)

n−1xn(s)ds (2.6)

and where xn(s) = ẋn−1(s). Note that Wi(xnt) = O(hn
i ). In Fridman

and Shaikhet (2016) the delayed state was presented as x0(t −

h1) = x0(t)−hx1(t)+δ(t)with δ(t) = O(h2), whereas a particular
form of the remainder δ was not exploited. In such away it was not
clear how to extend the results of Fridman and Shaikhet (2016) to
n > 2.

Remark 2.1. For n = 1 representation (2.5) coincides with the
basic relation

x0(t − h1) = x0(t) −

 t

t−h1
ẋ0(s)ds

for delay-dependent stability conditions (see e.g. Fridman, 2014;
Kolmanovskii & Myshkis, 1999). In this sense the Lyapunov-based
analysis of Section 3 naturally extends simple delay-dependent
conditions from the 1st order to the nth order systems.

Denoting h0 = 0, we will find a delayed stabilizing static
output-feedback

u(t) =

n−1
i=0

Kix0(t − hi), Ki ∈ Rr×k. (2.7)

Substituting (2.7) into (2.3), we obtain the following closed-loop
system with delays

ẋ(t) = Ax(t) +

n−1
i=0

B̄Kix0(t − hi). (2.8)

From (2.5) we have

n−1
i=0

Kix0(t − hi) =

n−1
j=0

K̄jxj(t) +

n−1
i=1

KiWi(xnt), (2.9)

where

K̄0 =

n−1
i=0

Ki and

K̄j =
(−1)j

j!

n−1
i=1

hj
iKi, j = 1, . . . , n − 1.

(2.10)

From (2.10) for K = [K0 . . . Kn−1] we obtain

K̄ = KM,

M =


Ik 0 0 · · · 0

Ik −h1Ik
h2
1

2
Ik · · ·

(−h1)
n−1

(n − 1)!
Ik

. . . · · · · · · · · · · · ·

Ik −hn−1Ik
h2
n−1

2
Ik · · ·

(−hn−1)
n−1

(n − 1)!
Ik

 .
(2.11)

Since all the delays are different, the Vandermonde-type matrixM
is invertible. Moreover, the following holds:

Lemma 2.1. Let hi = ih(i = 0, . . . , n − 1) for some h > 0 and M
be given by (2.11). Then M−1

= O(h−n+1), i.e. the absolute values of
the entries of M−1 are bounded from above by Ch−n+1 with a positive
constant C = C(n).

Proof. The matrix M can be regarded as a matrix consisting
of k equal Vandermonde-type blocks Mb of size n (each block
is Vandermonde up to division of columns by corresponding
factorials). In particular, the determinant of each block is given by

detMb = C1


0≤i<j≤n−1

(hi − hj)

= C1(h0 − h1) · · · (h0 − hn−1)(h1 − h2) · · · (h1 − hn−1)

× · · · (hn−2 − hn−1) = C2hn(n−1)/2

with C1, C2 being functions of n.
Similarly to M , the inverse M−1 consists of k inverse matrices

(Mb)
−1. We can write (Mb)

−1
=

1
detMb

Adj(Mb), where the entries
of Adj(Mb) are (n−1)× (n−1)minors ofMb with some signs. Any
(n − 1) × (n − 1) minor ofMb, regarded as the sum of products of
elements taken one from each column, appears to be proportional
to hn(n−1)/2−s+1, where s is the number of the removed column of
Mb. Thus, the minimal order of the (n − 1) × (n − 1) minors of
Mb corresponds to the last removed column with s = n. Hence,
the minimal order of an entry of M−1 is (h

n(n−1)
2 −n+1)/h

n(n−1)
2 =

h−n+1. �
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