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a b s t r a c t

When estimating the correlation/spectral structure of a locally stationary process, one has to make two
important decisions. First, one should choose the so-called estimation bandwidth, inversely proportional
to the effective width of the local analysis window, in the way that complies with the degree of
signal nonstationarity. Too small bandwidth may result in an excessive estimation bias, while too
large bandwidth may cause excessive estimation variance. Second, but equally important, one should
choose the appropriate order of the spectral representation of the signal so as to correctly model
its resonant structure – when the order is too small, the estimated spectrum may not reveal some
important signal components (resonances), and when it is too high, it may indicate the presence of
some nonexistent components. When the analyzed signal is not stationary, with a possibly time-varying
degree of nonstationarity, both the bandwidth and order parameters should be adjusted in an adaptive
fashion. The paper presents and compares three approaches allowing for unified treatment of the problem
of adaptive bandwidth and order selection for the purpose of identification of nonstationary vector
autoregressive processes: the cross-validation approach, the full cross-validation approach, and the
approach that incorporates the multivariate version of the generalized Akaike’s final prediction error
criterion. It is shown that the latter solution yields the best results and, at the same time, is very attractive
from the computational viewpoint.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Estimation of the correlation structure of multivariate time se-
ries is one of the fundamental techniques allowing one to ‘‘under-
stand’’ experimental data, by revealing their internal relationships,
in many research areas such as telecommunications, economet-
rics, biology, medicine, geophysics, etc. Since in a majority of cases
the investigated signals are nonstationary, evaluation of the cor-
responding autocovariance functions is usually carried out using
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the local estimation approach, i.e., based on analysis of a short data
segment extracted from the entire dataset by a sliding window of
a certain width (Dahlhaus, 2012). Under the local stationarity as-
sumptions the revealed signal correlation structure can be further
investigated in the frequency domain using the concept of a time-
varying signal spectrum (Dahlhaus, 2012).

One of the important decisions that must be taken when
performing correlation and/or spectral analysis of a nonstationary
signal is the choice of the size of the local analysis interval, which
is inversely proportional to the so-called estimation bandwidth,
i.e., the frequency range in which parameter changes can be
tracked ‘‘successfully’’. Bandwidth optimization allows one to
reach a compromise between the bias and variance of the
corresponding estimates—large bandwidth results in covariance
estimates with large variance but small bias, and small bandwidth
causes the opposite effect. When the rate of signal nonstationarity
changes over time, estimation bandwidth should be chosen in an
adaptive way.

Another important parameter, which must be determined
when spectral analysis is carried out, is the number of quantities
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that should be incorporated in the signal description to obtain
the most adequate spectrum estimates, quantities such as the
number of signal covariance matrices corresponding to different
lags (in the nonparametric, i.e., data-driven approach), or the
number of signal model parameters (in the parametric, i.e., model-
based approach). This will be further referred to as the problem
of selection of the order of spectral representation. When the
selected order is too small, the estimated spectrummay not reveal
some important signal components (resonances), while selecting
too high order may result in spectral estimates that indicate the
presence of nonexistent (spurious) signal components. From the
qualitative viewpoint both alternatives are unsatisfactory. Similar
to bandwidth selection, for nonstationary signals the order should
be adjusted in an adaptive fashion.

For stationary signals order estimation is a well-explored
statistical problem, which can be solved in many different ways.
The most popular solutions are those based on the Akaike
information criterion (AIC) (Akaike, 1974), Schwarz criterion,
frequently referred to as the Bayesian information criterion (BIC)
(Schwarz, 1978), and Rissanen’s minimum description length
(MDL) criterion (Rissanen, 1978). Generalized versions of the AIC
and BIC criteria, applicable to local estimation schemes, were
proposed in Niedźwiecki (1984, 1985), respectively.

Selection of the estimation bandwidth for the purpose of covari-
ance/spectral analysis of nonstationary signals is a far less investi-
gated topic. The solution that has gained a considerable attention
in recent years, proposed in Goldenshluger and Nemirovski (1997)
and further developed in Katkovnik (1999) and Stanković (2004),
is based on the analysis of the intersection of the confidence inter-
vals (ICI). The ICI approach, developed originally for the purpose of
polynomial signal smoothing, was recently applied to covariance
estimation in Fu, Chan, Di, Biswal, and Zhang (2014).

When the rate of signal nonstationarity is unknown, and
possibly time-varying, several identification algorithms, with
different estimation bandwidth settings, can be run in parallel and
compared based on their interpolation or predictive capabilities.
At each time instant the best-matching VAR model and the
corresponding maximum entropy like spectrum estimator can be
chosen by means of minimization, over the set of all models, the
local performance index.

In this paper we present three approaches allowing for
unified treatment of the order and bandwidth selection. The first
approach, based on minimization of the local cross-validatory
performance measure, was originally used for signal smoothing
(Niedźwiecki, 2010). Later on, it was extended to the problem of
noncausal identification of nonstationary finite impulse response
(FIR) systemsusing theKalman filter approach (Niedźwiecki, 2012)
and the basis function approach (Niedźwiecki & Gackowski, 2013).
Even though derived from the same general modeling principles,
none of the solutions presented in the abovementioned papers
is directly applicable to the problem of covariance/spectrum
estimation. The second approach, based on the concept of full
cross-validatory analysis, is a refinement of the first one. Finally,
the third approach is based on assessment of predictive capabilities
of models obtained for different bandwidth/order choices via the
Akaike’s final prediction error criterion.

2. Basic facts about the vector autoregressive representation

Consider a discrete stationary m-dimensional random signal
{y(t), t = · · · , −1, 0, 1, . . .}, y(t) = [y1(t), . . . , ym(t)]T, where
t denotes the normalized (dimensionless) discrete time. Suppose
that the first n + 1 autocovariance matrices of y(t) are known,
namely

E[y(t)yT(t − l)] = Rl, l = 0, . . . , n. (1)

It is well-known from the Burg’s work (Burg, 1967, 1975) that the
maximumentropy (i.e., themost unpredictable) stationary process
subject to the constraints (1) is the Gaussian vector autoregressive
(VAR) process of order n satisfying the equation

y(t) +

n
i=1

Aiy(t − i) = ϵ(t), cov[ϵ(t)] = ρ (2)

where {ϵ(t)} denotes m-dimensional white noise sequence with
covariance matrix ρ, and

Ai =

a11,i · · · a1m,i
...

...
am1,i · · · amm,i

 =

α1i
...

αmi

 , i = 1, . . . , n

are them×mmatrices of autoregressive coefficients. The relation-
ship between the autocovariance matrices (1) and parameters of
the VAR model, known as the Yule–Walker (YW) equations, takes
the form

[I,A1, . . . ,An] R = [ρ,O, . . . ,O] (3)

where I and O denote the m × m identity and null matrices,
respectively, and R is the block Toeplitz matrix of the form

R =

R0 · · · Rn
...

. . .
...

RT
n · · · R0

 .

The maximum entropy (ME) extension of the autocovariance
sequence (1) Rl = −

n
i=1 AiRl−i, l > n, where Ri = Ri for

0 ≤ i ≤ n, which stems from the VAR signal model (2), leads to the
following definition of the maximum entropy spectrum estimate

S(ω) =

∞
i=−∞

Rie−jωi
= A−1(ejω) ρ A−T(e−jω) (4)

where j =
√

−1, ω ∈ [0, π] denotes the normalized angular
frequency, and A(z−1) = I +

n
i=1 Aiz−i. Since the sequence of

autocovariance matrices {Ri, i = · · · , −1, 0, 1, . . .},R−i = RT
i , is

by construction nonnegative definite, the corresponding spectral
densitymatrix is also nonnegative definiteS(ω) ≥ O, ∀ω ∈ [0, π].
The off-diagonal elements ofS(ω), which can be interpreted as
cross-spectral densities of different pairs of components of y(t), are
in general complex-valued.

Two of our bandwidth/order selection procedures will be based
on the results of signal interpolation. To derive the interpolation
formula for the signal governed by the VARmodel (2), suppose that
all signal samples {y(i), i = −∞ < i < ∞} are known except for
y(t). The least squares estimate of y(t) can be obtained from

y(t) = argmin
y(t)

∞
s=−∞

∥y(s) +

n
i=1

Aiy(s − i)∥2

= argmin
y(t)

t+n
s=t

∥y(s) +

n
i=1

Aiy(s − i)∥2

= argmin
y(t)

zT(t) CTC z(t) (5)

where z(t) = [yT(t − n), . . . , yT(t + n)]T,

C =


An An−1 · · · A0 O · · · O O
O An · · · A1 A0 · · · O O
...

. . .
. . .

. . .

O O An · · · A1 A0


and A0 = I. Note that C is a (n+ 1) × (2n+ 1) block matrix made
up of m × m dimensional blocks.
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